Math, asked by rahulpatel0411, 1 year ago

Find the equation of tangent and normal to the circle x²+y²-3x+4y-31=0 at the point (-2,3).​

Answers

Answered by Anonymous
21

Step-by-step explanation:

 {x}^{2}  +  {y}^{2}   -  3x + 4y - 31 = 0 \\  \\ putting \: ( - 2) \: in \: x \: and \: 3 \: in \: y \\  \\  {( - 2)}^{2}  +  {3}^{2}  - 3 \times ( - 2) + 4 \times 3 - 31 = 0 \\  \\ 4 + 9 + 6 + 12 - 31 = 0 \\  \\ 31 - 31 = 0 \\  \\ 0 = 0

Answered by lublana
2

The equation of tangent at point (-2,3)  to the given circle

7x-10y+44=0

The equation of normal at point (-2,3) to the given circle is given by

10x+7y=1

Step-by-step explanation:

Given equation:

x^2+y^2-3x+4y-31=0

Differentiate w.r.t x

2x+2yy'-3+4y'=0

2yy'+4y'=3-2x

y'(2y+4)=3-2x

y'=\frac{3-2x}{2y+4}

Substitute x=-2 and y=3

y'=\frac{3-2(-2)}{2(3)+4}=\frac{7}{10}

m=y'=\frac{7}{10}

Point-slope form:

y-y_1=m(x-x_1)

Using the formula

The equation of tangent at point (-2,3)  to the given circle

y-3=\frac{7}{10}(x+2)

10y-30=7x+14

7x-10y+14+30=0

7x-10y+44=0

Slope of normal=-\frac{1}{m}=-\frac{10}{7}

The equation of normal at point (-2,3) is given by

y-3=-\frac{10}{7}(x+2)

7y-21=-10x-20

10x+7y=-20+21=1

10x+7y=1

#Learn more:

https://brainly.in/question/8330451

Similar questions