find the equation of tangent at (1,2) on the curve x²+y²=5
Answers
Answered by
0
Let (x,y) be the required point.
The slop of line 2x+3y=7 is
3
−2
.
⇒ x
2
+y
2
=13 ---- ( 1 )
⇒ 2x+2y
dx
dy
=0
⇒
dx
dy
=
y
−x
Slop of the tangent at (x,y)=
dx
dy
=
y
−x
Slope of the tangent = Slop of the given line
⇒
y
−x
=
3
−2
⇒ x=
3
2y
---- ( 2 )
From equation ( 1 ), we get
⇒ (
3
2y
)
2
+y
2
=13
⇒
9
13y
2
=13
⇒ y
2
=9
⇒ y=±3
⇒ y=3 or y=−3
And from equation ( 2 ),
⇒ x=
3
2(3)
=2 or x=
3
2(−3)
=−2
∴ The required points are (2,3) and (−2,−3).
Similar questions