Math, asked by vipinnarwatkheri, 9 months ago

find the equation of tangent line to the curve y=(2x+1) /(3x-1) at the point where x=1??

Answers

Answered by JuneliTamang
0

Answer:

x=1

y= (2x+1) /(3x-1)

=2(1) +1/3(1) -1

=2+1/3-1

=3/2

Answered by shadowsabers03
5

Equation of the curve is,

\longrightarrow y=\dfrac{2x+1}{3x-1}

The y coordinate of the point on the curve where x=1 is,

\longrightarrow y=\dfrac{2+1}{3-1}

\longrightarrow y=\dfrac{3}{2}

Slope of tangent to the curve,

\longrightarrow m=\dfrac{dy}{dx}

\longrightarrow m=\dfrac{d}{dx}\left(\dfrac{2x+1}{3x-1}\right)

\longrightarrow m=\dfrac{2(3x-1)-3(2x+1)}{(3x-1)^2}

\longrightarrow m=-\dfrac{5}{(3x-1)^2}

At x=1,

\longrightarrow m=-\dfrac{5}{(3-1)^2}

\longrightarrow m=-\dfrac{5}{4}

Therefore, equation of tangent on the curve at the point \left(1,\ \dfrac{3}{2}\right) is, by point - slope form,

\longrightarrow y-\dfrac{3}{2}=-\dfrac{5}{4}\left(x-1\right)

\longrightarrow y-\dfrac{3}{2}=-\dfrac{5x}{4}+\dfrac{5}{4}

Multiplying by 4,

\longrightarrow 4y-6=-5x+5

\longrightarrow\underline{\underline{5x+4y-11=0}}

Similar questions