Math, asked by mayankphogat56, 7 months ago

Find the equation of tangent to curve x=acost + atsint and y=asint-atcost at any point t​

Answers

Answered by Anonymous
40

Explanation:-

\large\rm { x = a \ \cos \ t + \ a \ \sin \ t}

\large\rm { \therefore x = a(t + \sin \ t + \cos \ t)}

\large\rm { y = a \ \sin \ t - a \ t \ \cos \ t}

\large\rm {\therefore y = a(1+ \sin \ t)^{2}}

Now,

\large\rm { \frac{dx}{dt} = 2a \ \cos^{2} t}

\large\rm { \frac{dy}{dt} = 2a( \cos \ t + \cos \ t \ \sin \ t}

\large\rm { \implies \frac{dy}{dx} = \frac{1 + \sin \ t}{ \cos \ t}}

\LARGE\rm { = \frac{ ( \cos    \frac{ t  }{ 2  }       + \sin   \frac{ t  }{ 2  }      )  ^ { 2  }    }{  \cos    ^ { 2  }   \frac{ t  }{ 2  }      - \sin    ^ { 2  }   \frac{ t  }{ 2  }         } }

\large\rm { = \tan \bigg ( \frac{ \pi}{4} + \frac{t}{2} \bigg ) }

So, slope of tangent to the curve = \rm { = \tan \bigg ( \frac{ \pi}{4} + \frac{t}{2} \bigg ) }

So, Equation for tangent to the curve

\large\boxed{\rm{ \psi = \frac{1}{4} ( \pi + 2t) }}

Similar questions