Math, asked by sumanxiasci, 2 months ago

find the equation of tangent to the parabola y^2 = 9x at ( 1 ,- 3 ) . please solve this .​

Answers

Answered by amansharma264
71

EXPLANATION.

Equation of tangent to the parabola : y² = 9x.

At the points = (1,-3).

As we know that,

General equation of parabola : y² = 4ax.

Compare both the equation, we get.

⇒ 4a = 9.

⇒ a = 9/4.

As we know that,

Formula of :

The equation of the tangent of the parabola y² = 4ax is y = mx + a/m.

Put the values of (x, y) = (1,-3),

⇒ (-3) = m(1) + 9/4m.

⇒ - 3 = m + 9/4m.

⇒ - 12m = 4m² + 9.

⇒ 4m² + 12m + 9 = 0.

Factorizes the equation into middle term splits, we get.

⇒ 4m² + 6m + 6m + 9 = 0.

⇒ 2m(2m + 3) + 3(2m + 3) = 0.

⇒ (2m + 3)(2m + 3) = 0.

⇒ (2m + 3)² = 0.

⇒ 2m + 3 = 0.

⇒ m = -3/2.

As we know that,

Formula of :

Equation of tangent.

⇒ (y - y₁) = m(x - x₁).

⇒ (y - (-3)) = -3/2(x - 1).

⇒ (y + 3) = -3/2(x - 1).

⇒ 2(y + 3) = -3(x - 1).

⇒ 2y + 6 = - 3x + 3.

⇒ 2y + 3x + 6 - 3 = 0.

⇒ 2y + 3x + 3 = 0.

                                                                                                                         

MORE INFORMATION.

Conditions of tangency.

(1) = The line y = mx + c touches a parabola y² = 4ax then c = a/m.

(2) = The line y = mx + c touches a parabola x² = 4ay then c = -am².

Similar questions