Math, asked by josephgualjg5641, 7 months ago

Find the equation of the circle passing through (3, 4) and having the centre at (-3, 4)

Answers

Answered by Anonymous
30

\mathfrak{\bf{\underline{\underline{Gívєn \ :-}}}}

ㅤㅤㅤㅤthє єquαtíσn σf thє círclє pαѕѕíng thrσugh

ㅤㅤㅤㅤㅤㅤ( 3,4 ) hαvíng cєntrє αt ( -3,4 ).

\mathfrak{\bf{\underline{\underline{Tσ  \  fínd  \ :-}}}}

ㅤㅤㅤㅤㅤㅤㅤThє єquαtíσn σf círclє fσr gívєn dαtα.

\mathfrak{\bf{\underline{\underline{Sσlutíσn \ :-}}}}

wє knσw thαt,

єquαtíσn σf círclє :—

(x - x_{1})^{2}  + ( {y - y_{1})}^{2}  =  {r}^{2}  \\

whєrє,

(x_{1},y_{1}) \: are \: the \: co -  ordinates  \: of \: centre \: of  \\ \: the \: circle \: and \: r \: is \: the \: radius

(x - x_{1})^{2}  + ( {y - y_{1})}^{2}  =  {r}^{2}  \\

 \sqrt{(x - x_{1}) ^{2} + ( {y - y_{1}) }^{2}  }  = r \\

 \sqrt{[3 - ( -  3)] ^{2}  +[ (4 - 4)] ^{2}  }  = r \\

ㅤㅤㅤㅤ \sqrt{( {3})^{2} }  = r \\

ㅤㅤㅤㅤㅤㅤㅤ \boxed{r = 3} \\

hєncє thє єquαtíσn σf thє círclє íѕ,

 \implies \: [(x - ( - 3) ]^{2}  + [(y - 4)] ^{2}  =  {3}^{2}  \\

 \implies \: (x + 3) ^{2}  + (y - 4) ^{2}  = 9

 \implies \:  ({x}^{2}  + 6x + 9) + ( {y}^{2}  - 8y + 16) = 9 \\

  \implies \:  \:  \:  \:  \:  \:  {x}^{2}   + {y}^{2}  + 6x - 8x + 16 = 0 \\

 \implies \:  \:  \:  \:  \:  \boxed{ \boxed{ {x}^{2}  +  {y}^{2}  + 6x - 8y + 16 = 0}}

Similar questions