Math, asked by rahulkumar3745, 1 year ago

find the equation of the circle passing through the points (1,2),(3,-4)and (5,-6)find the centre and rafius in each case

Answers

Answered by MaheswariS
51

\textsf{Let the equation of the required circle be $x^2+y^2+2gx+2fy+c=0$}

\textsf{since the given circle passes through (1,2), (3,-4) and (5,-6), we have}

\mathsf{1^2+2^2+2g(1)+2f(2)+c=0}

\implies\mathsf{2g+4f+c=-5}........(1)

\mathsf{3^2+(-4)^2+2g(3)+2f(-4)+c=0}

\implies\mathsf{6g-8f+c=-25}........(2)

\mathsf{5^2+(-6)^2+2g(5)+2f(-6)+c=0}

\implies\mathsf{10g-12f+c=-61}........(3)

\mathsf{(2)-(1), gives}

\mathsf{6g-8f+c=-25}........(2)

\mathsf{2g+4f+c=-5}........(1)

\mathsf{4g-12f=-20}

\mathsf{g-3f=-5}........(4)

\mathsf{(3)-(2), gives}

\mathsf{10g-124f+c=-61}......(3)

\mathsf{6g-8f+c=-25}...........(2)

\mathsf{4g-4f=-36}

\mathsf{g-f=-9}...........(5)

\mathsf{g-3f=-5}........(4)

\mathsf{(5)-(4), gives}

\mathsf{2f=-4}

\implies\mathsf{f=-2}

\textsf{put f=-2 in (5), we get}

\mathsf{g+2=-9}

\implies\mathsf{g=-11}

\textsf{put g=-11 and f=-2 in (1), we get}

\mathsf{2(-11)+4(-2)+c=-5}

\mathsf{-22-8+c=-5}

\mathsf{c=25}

\implies\mathsf{c=25}

\textsf{The equation of the required circle is}

\mathsf{x^2+y^2+2(-11)x+2(-2)y+25=0}

\implies\boxed{\mathsf{x^2+y^2-22x-4y+25=0}}

\textsf{Its centre is (-g,-f)=(11,2)}

\textsf{Radius=$\sqrt{g^2+f^2-c}$}

\textsf{Radius=$\sqrt{121+4-25}$}

\textsf{Radius=$\sqrt{100}$}

\implies\textsf{Radius=10}

Answered by asthamishra074
14

☆☆ANSWER ☆☆

☆Hope this helps u a lot!!!☆

❤❤please mark me as a brainlist answer!!!!❤❤

Attachments:
Similar questions