Math, asked by anindadebnath1993, 3 days ago

Find the equation of the circle passing through the points (5,2)(7,-4) and whose centre lies on y axis

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that,

Centre of circle lies on y - axis.

Let assume that centre of circle be (0, k) and radius of circle be r units.

So, equation of circle is given by

\rm \:  {(x - 0)}^{2} +  {(y - k)}^{2}  =  {r}^{2}  \\

\rm \:  {x}^{2} +  {(y - k)}^{2}  =  {r}^{2} -  -  - (1)  \\

Now, further given that circle passes through the point (5, 2)

So, it means (5, 2) satisfies equation (1).

\rm \:  {5}^{2} +  {(2 - k)}^{2}  =  {r}^{2} -  -  - (2)  \\

Also, given that circle passes through the point (7, - 4).

So, it means (7, - 4) satisfies equation (1).

\rm \:  {7}^{2} +  {( - 4 - k)}^{2}  =  {r}^{2} -  -  - (3)  \\

On equating equation (2) and (3), we get

\rm \:  {7}^{2} +  {( - 4 - k)}^{2}  =  {5}^{2}  +  {(2 - k)}^{2}   \\

\rm \: 49 + 16 +  {k}^{2} + 8k   =  25 +  {k}^{2} + 4 - 4k    \\

\rm \: 65 + 8k   =  29 - 4k    \\

\rm \: 12k =  - 36 \\

\rm\implies \:k \: =  \:  - 3 \\

On substituting the value of k in equation (2), we get

\rm \:  {5}^{2} + (2 + 3)^{2}  =  {r}^{2}  \\

\rm\implies \: {r}^{2}   = 50 \\

On substituting the values of k and r in equation (1), we get

\rm \:  {x}^{2} +  {(y + 3)}^{2} = 50 \\

\rm \:  {x}^{2} +   {y}^{2} + 9 + 6y  = 50 \\

\rm \:  {x}^{2} +   {y}^{2}  + 6y  - 41 = 0 \\

So, the required equation of circle passing through the points (5,2)(7,-4) and whose centre lies on y axis is

\rm\implies \:\boxed{\sf{  \:\rm \:  {x}^{2} +   {y}^{2}  + 6y  - 41 = 0 \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formulae Used :-

Equation of circle having centre (h, k) and radius r is

\boxed{\sf{  \: \:  {(x - h)}^{2} +  {(y - k)}^{2} =  {r}^{2}  \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

1. Equation of circle in general form is

\boxed{\sf{  \: {x}^{2} +  {y}^{2} + 2gx + 2fy + c \:  =  \: 0 \: }} \\

having

\boxed{\sf{  \:Centre \:  =  \: ( - g, \:  - f) \:  \: }} \\

and

\boxed{\sf{  \: \: Radius, \: r \:  =  \sqrt{ {g}^{2}  +  {f}^{2}  - c}  \:  \: }} \\

Similar questions