Math, asked by mahira333, 1 year ago

find the equation of the circle which passes through (4,1),(6,5) and having centre on 4x+3y-24=0

Answers

Answered by mysticd
28

 Let \: the \:equation \:of \:the \:circle \:be \\\pink { (x-h)^{2} + (y-k)^{2} = r^{2}} \: ---(1)

 i) Since \: circle \: passes \: through \:(4,1) \\it \: will \:satisfy \: equation \: of \:circle

 put \: x = 4 \: and \: y = 1 \: in \: (1)

 \implies (4-h)^{2} + ( 1-k)^{2} = r^{2}

 \implies 4^{2} + h^{2}-2\times 4 \times h + 1^{2} + k^{2} - 2 \times 1 \times k = r^{2}

 \implies 16+h^{2} - 8h + 1+k^{2} - 2k = r^{2}

 \implies h^{2}+k^{2}-8h-2k+17=r^{2} \: --(2)

 ii) Since \: circle \: passes \: through \:(6,5) \\it \: will \:satisfy \: equation \: of \:circle

 put \: x = 6\: and \: y = 5\: in \: (1)

 \implies (6-h)^{2} + ( 5-k)^{2} = r^{2}

 \implies 6^{2} + h^{2}-2\times 6\times h + 5^{2} + k^{2} - 2 \times 5\times k = r^{2}

 \implies 36+h^{2} - 12h + 25+k^{2} - 10k = r^{2}

 \implies h^{2}+k^{2}-12h-10k+61=r^{2} \: --(3)

 iii ) Since , centre \: of \: circle \:(h,k) \:lie \\on \:the \: line \: 4x + 3y - 24 = 0

 \implies 4h + 3k = 24 \: ---(4)

/* Subtract equation (3) from (2) , we get */

 h^{2}+k^{2}-8h-2k+17-(h^{2}+k^{2}-12h-10k+61) = r^{2} - r^{2}

 \implies h^{2}+k^{2}-8h-2k+17- h^{2}-k^{2}+12h+10k-61= 0

 \implies 4h + 8k - 44 = 0

/* Dividing each term by 4 , we get */

 \implies h + 2k  - 11 = 0

 \implies h =  -2k  + 11 \: ---(5)

/* Substitute (5) in equation (4) , we get */

 \implies 4(-2k+11) + 3k = 24

 \implies -8k + 44 + 3k = 24

 \implies -5k = 24 - 44

 \implies -5k = - 20

 \implies k = \frac{- 20}{-5}

 \implies k = 4

/* put k = 4 in equation (5) , we get */

 h = -2\times 4 + 11

 \implies h = -8 + 11

 \implies h = 3

 Put \:h = 3 \: and \: k = 4 \: in \: equation \:(2) ,\\we \:get

 3^{2}+4^{2}-8\times 3 - 2\times 4 + 17 = r^{2}

 \implies 9 + 16 - 24 - 8 + 17 = r^{2}

 \implies 10 = r^{2}

 Put \:h = 3 \: and \: k = 4 \: and \: r^{2} = 10 \:in\\ equation \:(1) ,\:we \:get

 \implies ( x - 3 )^{2} + ( y - 4 )^{2} = 10

 \implies x^{2} + 3^{2} - 2\times x \times 3 + y^{2} + 4^{2} - 2\times y \times 4 = 10

 \implies x^{2} + 9 - 6x  + y^{2} + 16 - 8y = 10

 \implies x^{2} + y^{2} -6x -8y + 25-10 = 0

 \implies x^{2} + y^{2} -6x -8y + 15 = 0

Therefore.,

 \red { Required \: equation \: of \:circle }

 \green { x^{2} + y^{2} -6x -8y + 15 = 0 }

•••♪

Answered by bhoomika6767
12

Answer:

Step-by-step explanation:

Let required equation be x²+y²+2gx+2fy+c=0

Substitute A(4,1) in equation 1

......

......

...

Attachments:
Similar questions