Math, asked by 200455, 4 months ago

Find the equation of the circle which passes through the points (2, 3), (4, 5) and
centre lies on the line y - 4x +3 = 0.​

Answers

Answered by amansharma264
24

EXPLANATION.

Equation of the circle which passes through the points,

(2,3) & (4,5).

Centre lies on the line : y - 4x + 3 = 0.

As we know that,

General equation of circle,

⇒ x² + y² + 2gx + 2fy + c = 0.

Centre of circle = (-g,-f).

Radius of the circle = √(g)² + (f)² - c.

Equation of circle passes through point = (2,3).

Put the point in the equation, we get.

⇒ (2)² + (3)² + 2g(2) + 2f(3) + c = 0.

⇒ 4 + 9 + 4g + 6f + c = 0.

⇒ 4g + 6f + 13 + c = 0. ⇒ (1).

Equation of circle passes through point = (4,5).

Put the point in the equation, we get.

⇒ (4)² + (5)² + 2g(4) + 2f(5) + c = 0.

⇒ 16 + 25 + 8g + 10f + c = 0.

⇒ 8g + 10f + 41 + c = 0.

⇒ c = -(8g + 10f + 41). ⇒ (2).

From equation, (1) & (2), we get.

Put the value of equation (2), we get.

⇒ 4g + 6f + 13 - (8g + 10f + 41 ) = 0.

⇒ 4g + 6f + 13 - 8g - 10f - 41 = 0.

⇒ - 4g - 4f - 28 = 0.

⇒ -4(g + f + 7) = 0.

⇒ g + f + 7 = 0. ⇒ (3).

As we know that,

Centre of the Circle = (-g,-f).

Centre lies on the line : y - 4x + 3 = 0.

Put x = -g & y = -f in equation, we get.

⇒ -f -4(-g) + 3 = 0.

⇒ -f + 4g + 3 = 0.

⇒ f = 4g + 3. ⇒ (4).

From equation, (3) &(4), we get.

Put the value of equation (4) in equation (3), we get.

⇒ g + f + 7 = 0.

⇒ g + ( 4g + 3) + 7 = 0.

⇒ g + 4g + 3 + 7 = 0.

⇒ 5g + 10 = 0.

⇒ 5g = -10.

⇒ g = -2.

Put the value of g = -2 in equation (4), we get.

⇒ f = 4g + 3.

⇒ f = 4(-2) + 3.

⇒ f = -8 + 3.

⇒ f = -5.

Put the value of g = -2 & f = -5 in equation (2), we get.

⇒ c = -(8g + 10f + 41).

⇒ c = -[ 8(-2) + 10(-5) + 41 ].

⇒ c = - [ -16 - 50 + 41 ].

⇒ c = + 16 + 50 - 41.

⇒ c = 66 - 41.

⇒ c = 25.

Put the value of g = -2 & f = -5 & c = 25 in general equation of circle.

⇒ x² + y² + 2gx + 2fy + c = 0.

⇒ x² + y² + 2(-2)x + 2(-5)y + 25 = 0.

⇒ x² + y² - 4x - 10y + 25 = 0.

Answered by gurmanpreet1023
50

Centre lies on the line y - 4x + 3 = 0

Let x = h

» y = 4 h - 3

So the center is of the form (h, 4h - 3)

Distance of centre from (2,3) and (4,5) will be equal

»(h-2)² + (4h-3 – 3)² = (h-4)² +

(4h-3-5)²

h= 2

So the centre is (2,5)

r=√ (2 – 2)² + (5 – 3)² = 2

So the equation of the circle is

(x - 2)²+ (y – 5)²= 2²

x²+ y² – 4x – 10y + 25 = 0

@gurmanpreet1023

Similar questions