Math, asked by shwetayadav18055, 1 day ago

Find the equation of the circle whose center is on the linr y - x + 1 = and passing through the point (7,3) and its radius is 3​

Answers

Answered by Yugant1913
10

Given information

  • ⇀The circle whose center is on the linr y - x + 1 = 0 and passing through the point (7,3) and its radius is 3

What we need to calculate

  • ⇀We have to find the equation of the circle

let's Calculate

Let (h,k) be the center of the circle, then

 \qquad \qquad \: \red{  \textsf{ \textbf{k - h + 1 = 0}}} \qquad \:  \dots(1) \\  \\  \sf \: and \quad \:  \sqrt{(h -  {7)}^{2} + (k -  {3)}^{2}  }  = 3 \\  \\ \sf  \implies\: (h  \: { - 7)}^{2}  +  (k { - 3)}^{2}   = 9 \\  \\  \sf \implies \:  {h}^{2}  - 14h \:  + 49 +  {k }^{2}  - 6k \:  + 9 = 9 \\  \\   \red{\bf{ \implies \:  {h}^{2}  +  {k}^{2}  - 14h - 6k + 49 = 0} \: } \qquad \dots(2) \\   \\

From equation (1),

  \\ \qquad \qquad \qquad \textsf {\textbf{k = h - 1}} \qquad \qquad \dots(3) \\

Putting this value of k in equation (2),

  \\ \qquad \sf \:  {h}^{2}  +  {(h - 1)}^{2}  - 14h - 6(h - 1) + 49 = 0 \\  \\  \sf \implies \:  {h}^{2}  +  {h}^{2}  - 2h + 1 - 14h - 6h + 6 + 49 = 0 \\  \\  \sf \implies \qquad \qquad \qquad \: 2 {h}^{2}  - 22h + 56 = 0 \\  \\  \sf \implies \qquad \qquad \qquad \: {h}^{2}  - 11h + 28 = 0 \\  \\  \sf \implies \qquad \qquad \qquad \: {h}^{2}  - 4h - 7h + 28 = 0 \\  \\ \sf \implies \qquad \qquad \qquad \:(h - 4)(h - 7) = 0 \\  \\    \implies{\qquad \qquad \qquad    \underline{\boxed{\textbf{ \textsf{ \:h = 4 ,7}}}}} \green \bigstar \\

From equation (3)

 \qquad \qquad \qquad \qquad \bf k = 4 - 1,7 - 1 \\   \\ \implies \qquad \qquad \qquad  \bf \: k= 3,6 \\

Therefore, center of the circle is (4,3) and (7,6) and radius is 3

Thus , equation of the circle is

 \qquad \qquad \:  \sf \:  {(x - 4)}^{2}  +  {(y - 3)}^{2}  =  {3}^{2}  \\  \\  \sf \implies  \qquad \qquad \: {x}^{2}  - 8x + 16 +  {y}^{2}  - 6y + 9 = 9 \\  \\ \sf \implies \qquad \qquad \qquad \: {x}^{2}  -  {y}^{2}  - 8x - 6y + 16 = 0 \\  \\  \bf \: and \:  \qquad \qquad \sf \:  {(x - 7)}^{2}  +  {(y - 6)}^{2}  =  {3}^{2}  \\  \\ \sf \implies \qquad  \: {x}^{2}  - 14 + 49 +  {y}^{2}  - 12y + 36 = 9 \\  \\ \sf \implies \qquad \underline{   \boxed{{ \bf {x}^{2}  +  {y}^{2}  - 14x - 12y  + 76 = 0}}}  \orange\bigstar \\  \\

Similar questions