find the equation of the circle with
1. Centre (0, 2) and radius 2
2.Centre (1/2, 1/4) and radius (1/12)
Answers
Solution :-
Condition (I) :- Centre (0, 2) and radius 2.
↪Let us consider the equation of a circle with centre (h, k) and,
↪Radius r is given as (x - h)² + (y - k)² = r².
↪So, centre (h, k) = (0, 2) and radius (r) = 2.
↪The equation of the circle is :
↪(x - 0)² + (y - 2)² = 2²
↪x² + y² + 4 - 4y = 4
↪
∴ The equation of the circle is x² + y² -4y = 0.
_________________
Condition (2) :- Centre (1/2, 1/4) and radius (1/12).
↪Let us consider the equation of a circle with centre (h, k) and,
↪Radius r is given as (x – h)² + (y – k)² = r².
↪So, centre (h, k) = (1/2, 1/4) and radius (r) = 1/12.
↪The equation of the circle is :
↪(x – 1/2)² + (y – 1/4)² = (1/12)²
↪x² – x + ¼ + y² – y/2 + 1/16 = 1/144
↪x² - x + ¼ + y² – y/2 + 1/16 = 1/144
↪144x² - 144x + 36 + 144y² - 72y + 9 - 1 = 0
↪144x² - 144x + 144y² -72y + 44 = 0
↪36x² + 36x + 36y² - 18y + 11 = 0
↪
∴ The equation of the circle is 36x² + 36y² - 36x - 18y + 11= 0.
sᴏʟᴜᴛɪᴏɴ :-
ᴄᴏɴᴅɪᴛɪᴏɴ (ɪ) :- ᴄᴇɴᴛʀᴇ (, ) ᴀɴᴅ ʀᴀᴅɪᴜs .
↪ʟᴇᴛ ᴜs ᴄᴏɴsɪᴅᴇʀ ᴛʜᴇ ᴇǫᴜᴀᴛɪᴏɴ ᴏғ ᴀ ᴄɪʀᴄʟᴇ ᴡɪᴛʜ ᴄᴇɴᴛʀᴇ (ʜ, ᴋ) ᴀɴᴅ,
↪ʀᴀᴅɪᴜs ʀ ɪs ɢɪᴠᴇɴ ᴀs (x - ʜ)² + (ʏ - ᴋ)² = ʀ².
↪sᴏ, ᴄᴇɴᴛʀᴇ (ʜ, ᴋ) = (, ) ᴀɴᴅ ʀᴀᴅɪᴜs (ʀ) = .
↪ᴛʜᴇ ᴇǫᴜᴀᴛɪᴏɴ ᴏғ ᴛʜᴇ ᴄɪʀᴄʟᴇ ɪs :
↪(x - )² + (ʏ - )² = ²
↪x² + ʏ² + - ʏ =
↪{\ʙᴏxᴇᴅ{\ʀᴇᴅ{\ᴛᴛ{x^ + ʏ^ - ʏ = }}}}
x
+ʏ
−ʏ=
∴ ᴛʜᴇ ᴇǫᴜᴀᴛɪᴏɴ ᴏғ ᴛʜᴇ ᴄɪʀᴄʟᴇ ɪs x² + ʏ² -ʏ = .
_________________
ᴄᴏɴᴅɪᴛɪᴏɴ () :- ᴄᴇɴᴛʀᴇ (/, /) ᴀɴᴅ ʀᴀᴅɪᴜs (/).
↪ʟᴇᴛ ᴜs ᴄᴏɴsɪᴅᴇʀ ᴛʜᴇ ᴇǫᴜᴀᴛɪᴏɴ ᴏғ ᴀ ᴄɪʀᴄʟᴇ ᴡɪᴛʜ ᴄᴇɴᴛʀᴇ (ʜ, ᴋ) ᴀɴᴅ,
↪ʀᴀᴅɪᴜs ʀ ɪs ɢɪᴠᴇɴ ᴀs (x – ʜ)² + (ʏ – ᴋ)² = ʀ².
↪sᴏ, ᴄᴇɴᴛʀᴇ (ʜ, ᴋ) = (/, /) ᴀɴᴅ ʀᴀᴅɪᴜs (ʀ) = /.
↪ᴛʜᴇ ᴇǫᴜᴀᴛɪᴏɴ ᴏғ ᴛʜᴇ ᴄɪʀᴄʟᴇ ɪs :
↪(x – /)² + (ʏ – /)² = (/)²
↪x² – x + ¼ + ʏ² – ʏ/ + / = /
↪x² - x + ¼ + ʏ² – ʏ/ + / = /
↪x² - x + + ʏ² - ʏ + - =
↪x² - x + ʏ² -ʏ + =
↪x² + x + ʏ² - ʏ + =
↪{\ʙᴏxᴇᴅ{\ʙʟᴜᴇ{\ᴛᴛ{x^ + ʏ^ - x - ʏ + = }}}}
x
+ʏ
−x−ʏ+=
∴ ᴛʜᴇ ᴇǫᴜᴀᴛɪᴏɴ ᴏғ ᴛʜᴇ ᴄɪʀᴄʟᴇ ɪs x² + ʏ² - x - ʏ + = .
Step-by-step explanation: