Find the equation of the circle with radius 5 whose centre lies on x-axis an
passes through the point (2,3).
Answers
EXPLANATION.
Equation of circle whose radius = 5.
Center lies on x-axis.
Passes through the point (2,3).
As we know that,
Equation of circle whose center lies on x-axis their Co-ordinates are = (h,0).
By using the distance Formula,
⇒ √(x₁ - x₂)² + (y₁ - y₂)² = r.
Let,
⇒ x₁ = h and y₁ = 0.
⇒ x₂ = 2 and y₂ = 3.
⇒ √(h - 2)² + (0 - 3)² = 5.
⇒ √(h² + 4 - 4h) + 9 = 5.
Squaring on both sides, we get.
⇒ h² + 4 - 4h + 9 = (5)².
⇒ h² - 4h + 13 = 25.
⇒ h² - 4h - 12 = 0.
Factorizes into middle term split, we get.
⇒ h² - 6h + 2h - 12 = 0.
⇒ h(h - 6) + 2(h - 6) = 0.
⇒ (h + 2)(h - 6) = 0.
⇒ h = -2 and h = 6.
(1) = If h = -2 then,
⇒ (x - h)² + (y - k)² = r².
⇒ ( x -(-2))² + (y - 0)² = (5)².
⇒ (x + 2)² + y² = 25.
⇒ x² + 4 + 4x + y² = 25.
⇒ x² + y² + 4x - 21 = 0.
(2) = If h = 6 then,
⇒ (x - h)² + (y - k)² = r².
⇒ (x - 6)² + (y - 0)² = (5)².
⇒ (x² + 36 - 12x ) + y² = 25.
⇒ x² + y² - 12x + 11 = 0.
Step-by-step explanation:
To find:- We have to find the equation of the circle ?
☯️ So let the center be (h, 0).
So let's do !!!
__________________
__________________
Hence Verified ✔.