Math, asked by jaydevb, 2 months ago

Find the equation of the ellipse, with centre at the origin, major axis on the Y-axis and passing through the point (3,2) and (1,6) ​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

 \sf \: Let \: the \: equation \: of \: ellipse \: be \: \dfrac{ {x}^{2} }{ {a}^{2} }  + \dfrac{ {y}^{2} }{ {b}^{2} }  = 1 -  - (1)

Now,

It is given that

  • Equation (1) passes through (3, 2),

Therefore,

\rm :\longmapsto\:\dfrac{ {3}^{2} }{ {a}^{2} }  + \dfrac{ {2}^{2} }{ {b}^{2} }  = 1

\rm :\longmapsto\:\dfrac{9}{ {a}^{2} }  + \dfrac{4}{ {b}^{2} }  = 1 -  -  - (2)

Also,

  • Equation (1) passes through (1, 6),

Therefore,

\rm :\longmapsto\:\dfrac{ {1}^{2} }{ {a}^{2} }  + \dfrac{ {6}^{2} }{ {b}^{2} }  = 1

\rm :\longmapsto\:\dfrac{ 1 }{ {a}^{2} }  + \dfrac{ 36}{ {b}^{2} }  = 1 -  -  - (3)

Now, we have to solve equation (2) and equation (3) to get the values of a and b,

Multiply equation (3) by 9, we get

\rm :\longmapsto\:\dfrac{9}{ {a}^{2} }  + \dfrac{ 324}{ {b}^{2} }  = 9 -  -  - (4)

On Subtracting, equation (3) fom equation (4), we get

\rm :\longmapsto\:\dfrac{320}{ {b}^{2} }  = 8

\bf\implies \: {b}^{2}  = 40 -  - (5)

Substituting the values of equation (5) in equation (3), we get

\rm :\longmapsto\:\dfrac{ 1 }{ {a}^{2} }  + \dfrac{ 36}{40 }  = 1

\rm :\longmapsto\:\dfrac{ 1 }{ {a}^{2} }  + \dfrac{ 9}{10 }  = 1

\rm :\longmapsto\:\dfrac{ 1 }{ {a}^{2} }   = 1 - \dfrac{ 9}{10 }

\rm :\longmapsto\:\dfrac{ 1 }{ {a}^{2} }   = \dfrac{ 10 - 9}{10 }

\rm :\longmapsto\:\dfrac{ 1 }{ {a}^{2} } =  \dfrac{ 1}{10 }

\bf\implies \: {a}^{2}  \:  =  \: 10 \:  -  -  - (6)

On substituting (6) and (5) in equation (1), we get

\rm :\longmapsto\:\dfrac{ {x}^{2} }{10}  + \dfrac{ {y}^{2} }{40}  = 1

\bf\implies \: {4x}^{2}  +  {y}^{2}  = 40

Additional Information :-

 \sf \: For  \: the \: ellipse \:  :  \: \dfrac{ {x}^{2} }{ {a}^{2} }  + \dfrac{ {y}^{2} }{ {b}^{2} }  = 1

 \boxed{ \bf{Vertex  \:  \:  = \:  \: ( \pm \: a, \: 0)}}

 \boxed{ \bf{eccentricity \: (e) =  \sqrt{1 - \dfrac{ {b}^{2} }{ {a}^{2} } } }}

 \boxed{ \bf{Focus \:  =  \: ( \pm \: ae, \: 0)}}

 \boxed{ \bf{Length  \: of Latus \: Rectum \:  = \dfrac{ {2b}^{2} }{a} }}

 \boxed{ \bf{Length \: of \: major \: axis \:  = 2a}}

 \boxed{ \bf{Length \: of \: minor \: axis \:  = 2b}}

Similar questions