Math, asked by Gaganbilkhu, 5 months ago

Find the equation of the ellipse with vertices (0, ±13) ; foci (0, ±5)​

Answers

Answered by aaru2647
16

Vertices (0, +13), foci (0,+5)

Here, the vertices are on the y-axis.

Therefore, the equation of the ellipse will be of the form

 \frac{x {}^{2} }{b {}^{2} }  +  \frac{y {}^{2} }{ {a}^{2} }  = 1

, where a is the

semi-major axis.

Accordingly, a = 13 and c = 5.

It is known that a² =b²+c²

=> 169 = b²+25

=> b²=169-25

=> b²= 144

Thus, the equation of the ellipse is

 \frac{ {x}^{2} }{144}  +  \frac{ {y}^{2} }{169}  = 1

Answered by aryan073
8

Given:

\red\bigstar\rm{Vertices =(0,\pm 13)} ......(1)

\red\bigstar\rm{Foci=(0,\pm 5)} .........(2)

To Find :

• Equations of the ellipse =?

Solution :

Hence,

The vertices are of the form \rm{(0,\pm a) }

Hence, the major axis is along y axis

& Equation of ellipse is of the form

 \\  \blue \bigstar \boxed{ \sf{  \frac{ {x}^{2} }{ {b}^{2} }  +  \frac{ {y}^{2} }{ {a}^{2} }  = 1}}

From (1) & (2)

\boxed{\bf{a=13}}

Also, Given coordinate of foci \rm{=(0,\pm 5)}

We know that ,foci are \rm{=(0,\pm c) }

\bf{So , \boxed{\bf{c=5}}}

We know that,

 \:  \implies \sf \:  {c}^{2}  =  {a}^{2}  -  {b}^{2}  \\  \\  \implies \sf \:  {(5)}^{2}  =  {(13)}^{2}  -  {b}^{2} \\  \\  \implies \sf \:  {b}^{2}   =  {(13)}^{2}  -  {(5)}^{2}  \\  \\  \implies \sf \:  {b}^{2}  = 169 - 25 \\  \\  \implies \boxed{ \sf{{b}^{2}  = 144  }}

Equation of ellipse is :

 \\  \implies \sf \:  \frac{ {x}^{2} }{ {b}^{2} }  +   \frac{ {y}^{2} }{ {a}^{2} }  = 1 \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underline{ \bf{ \bullet \: putting \: values \: }} \\  \\  \implies \sf \:  \frac{ {x}^{2} }{144}  +  \frac{ {y}^{2} }{169}  = 1 \\  \\  \\  \implies \boxed{ \sf{ \frac{ {x}^{2} }{144}  +  \frac{ {y}^{2} }{169}  = 1 \: is \: the \: equation \: of \: ellipse}}

Similar questions