Math, asked by geetugeethika6635, 1 year ago

Find the equation of the hyperbola the distance whose foci is 16 and whose eccentricity is√2

Answers

Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Eqn\:of\:hyperbola=x^{2}-y^{2}=32}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  \tt{ :  \implies  Foci = 16} \\  \\   \tt{ : \implies Eccentricity(e) = \sqrt{2}} \\  \\ \red{ \underline \bold{To \: Find : }}  \\   \tt{ : \implies  Eqn \:of \: hyperbola = ?}

• According to given question :

  \circ \: \tt{Let \: eqn   \: be \:   \frac{ {x}^{2} }{ {a}^{2} }  -   \frac{ {y}^{2} }{ {b}^{2} }  = 1} -  -  -  -  - (1) \\  \\   \  \tt{: \implies Foci = 2ae} \\  \\   \tt{ : \implies Foci \ =  16} \\  \\   \tt{ : \implies 2ae =16} \\  \\    \tt{: \implies a \times \sqrt{2} = 8} \\  \\    \green{ \tt{: \implies a = 4\sqrt{2}} }\\  \\  \bold{As \: we \: know \: that} \\   \tt{ : \implies  {b}^{2}  =  {a}^{2} ( {e}^{2}  - 1)} \\  \\   \tt{:  \implies  {b}^{2}  =  ({4\sqrt{2}})^{2} ( {\sqrt{2}}^{2}  - 1)} \\  \\   \tt{ : \implies   {b}^{2}  = 32(2 - 1)} \\  \\    \tt{: \implies   {b}^{2} = 32} \\  \\  \text{Putting \: given \: values \: in \: (1)} \\  \tt{  : \implies   \frac{ {x}^{2} }{ {a}^{2} }  -  \frac{ {y}^{2} }{ {b}^{2} }  = 1} \\  \\   \green{ \tt{: \implies  \frac{ {x}^{2} }{32}  -  \frac{ {y}^{2} }{32}  = 1}} \\  \\    \green{\tt{\therefore Eqn \: of \:hyperbola  \: is \: {x}^{2}  -  {y}^{2}  = 32}}

Similar questions