Math, asked by Raji2078, 1 year ago

Find the equation of the hyperbola whose foci are (8,3) and (0,3) and eccentricity = 4/3

Answers

Answered by prashilpa
2

Answer:

(x - 4)² /9 - (y - 3)² /7 = 0

Step-by-step explanation:

The equation of hyperbola = (x - h)² /a² - (y - k)² /b²  = 0

Where (h,k) is the center of the hyperbola.  

‘a’ is distance of vertex from center.  

‘e’ is eccentricity  

‘b’ is calculated as b² + a² = a²e²

Given, focii of the hyperbola are (8, 3) and (0, 3) and the eccentricity 4/3

Now, the center of the hyperbola is the mid-point of the line joining two foci i

So, Coordinate of center (h, k) = {(8 + 0)/2, (3 + 3)/2} = (4, 3)

Now, the distance between the focii = √{(0 - 8)² + (3 - 3)²} = √(8)² = 8

2a * e = 8  (eccentricity = e =4/3)

a * (4/3) = 4  

a = 3

a² = 9

Now, b² = a²(e² - 1)

b² = 9{(4/3)² - 1}

= 9(16/9 - 1)

= 9 * (7/9)

=> b² = 7

Equation of hyperbola is given by (x - h)² /a² - (y - k)² /b² = 0

(x - 4)² /9 - (y - 3)² /7 = 0

Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Eqn\:of\:hyperbola=7(x-4)^{2}-9(y-3)^{2}=63}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  \tt{ :  \implies  Foci = (8,3)\:and\:(0,3)} \\  \\   \tt{ : \implies Eccentricity(e) = \frac{4}{3}} \\  \\ \red{ \underline \bold{To \: Find : }}  \\   \tt{ : \implies  Eqn \:of \: hyperbola = ?}

• According to given question :

  \circ \: \tt{Let \: eqn   \: be \:   \frac{ {x}^{2} }{ {a}^{2} }  -   \frac{ {y}^{2} }{ {b}^{2} }  = 1} -  -  -  -  - (1) \\  \\   \  \tt{: \implies Foci = 2ae } \\  \\   \tt{ : \implies Foci \ =  \sqrt{(8-0)^{2}+(3-3)^{2}}=8} \\  \\   \tt{ : \implies 2ae = 8} \\  \\    \tt{: \implies a \times \frac{4}{3} = 4} \\  \\    \green{ \tt{: \implies a = 3} }\\  \\  \bold{As \: we \: know \: that} \\   \tt{ : \implies  {b}^{2}  =  {a}^{2} ( {e}^{2}  - 1)} \\  \\   \tt{:  \implies  {b}^{2}  =  {3}^{2} ( {(\frac{4}{3})}^{2}  - 1)} \\  \\   \tt{ : \implies   {b}^{2}  = 9\times \frac{7}{9}} \\  \\    \green{\tt{: \implies   {b}^{2} = 7}} \\ \\ \tt{:\implies Co-ordinate\:of\:centre=\frac{8+0}{2},\frac{3+3}{2}}\\\\ \tt{:\implies Co-ordinate\:of\:centre=(4,3)}\\ \\  \text{Putting \: given \: values \: in \: (1)} \\  \tt{  : \implies   \frac{ {x}^{2} }{ {a}^{2} }  -  \frac{ {y}^{2} }{ {b}^{2} }  = 1} \\  \\   \green{ \tt{: \implies  \frac{ {(x-4)}^{2} }{9}  -  \frac{ {(y-3)}^{2} }{7}  = 1}} \\  \\    \green{\tt{\therefore Eqn \: of \:hyperbola  \: is \: 7{(x-4)}^{2}  -  9({y-3)}^{2}  = 63}}

Similar questions