Math, asked by daksh5593, 1 year ago

Find the equation of the hyperbola whose foci are s(6 4) and s'(-4 4) and eccentricity 2

Answers

Answered by rishabhsingh010
7
Please solve it i hint,
Because,2ae=6+4=10
e=2its given
And, b^2=3a^2
Thus ,a=5/2&b=5√3/2
Answered by jitendra420156
0

Therefore the equation of hyperbola is

12{(x- 1)^2}- 4{(y- 4)^2}=75

Step-by-step explanation:

The co-ordinates of foci of a hyperbola are (\alpha+ae,\beta)  and  (\alpha-ae,\beta)

where the center of the hyperbola is (\alpha,\beta)

e= eccentricity =\sqrt{1+\frac{b^2}{a^2}}

a= semi major axis.

Then the equation of hyperbola

\frac{(x-\alpha)^2}{a^2}-\frac{(y-\beta)^2}{b^2}=1

Given the the co-ordinate of foci are (6,4) and (-4,4). Eccentricity = e= 2

(\alpha+ae,\beta)=(6,4)  and   (\alpha-ae,\beta)=(-4,4)

\therefore \beta=4

\alpha+ae=6 ......(1)   and       \alpha-ae=-4......(2)

Adding equation (1) and (2)

\therefore\alpha+ae+\alpha-ae=6+(-4)

\Rightarrow 2\alpha =2

\Rightarrow \alpha =1

Now putting \alpha =1 \ and \ e=2 in equation (1)

1+a.2=6

\Rightarrow a=\frac52

We know that

e^2=1+\frac{b^2}{a^2}

\Rightarrow b^2= a^2(e^2-1)

\Rightarrow b^2= (\frac52)^2(2^2-1)

\Rightarrow b^2= \frac{75}{4}

Therefore the equation of hyperbola is

\frac{(x-\alpha)^2}{a^2}-\frac{(y-\beta)^2}{b^2}=1

\frac{(x- 1)^2}{\frac{2 5}{4}}- \frac{(y- 4)^2}{\frac {75}{4}}=1

12{(x- 1)^2}- 4{(y- 4)^2}=75

Similar questions