Math, asked by Naman2086, 19 days ago

Find the equation of the hyperbola with foci at (±6, 0) and eccentricity 3/2 .

Answers

Answered by jitendra12iitg
1

Answer:

The answer is 25x^2-16y^2=400

Step-by-step explanation:

Let a be the length semi transverse axis and b be the length of its semi conjugate axis

Given foci are (\pm 6,0) and eccentricity, e=\frac{3}{2}

\Rightarrow ae=6\Rightarrow a(\frac{3}{2})=6\Rightarrow a=4

Using b^2=a^2(e^2-1)=4(\frac{9}{4}-1)=5

Hence the hyperbola is

                  \frac{x^2}{a^2}-\frac{y^2}{b^2}=1

             \Rightarrow \frac{x^2}{16}-\frac{y^2}{25}=1\\\Rightarrow 25x^2-16y^2=400

Similar questions