Find the equation of the line making and angle of 45° with the positive X-axis and at a distance 2√2 from the origin.
Answers
Answered by
3
Answer: Angle making with positive 'x' axis is 45. Distance from origin P = 2 √ 2 unit . Therefore , the equation of line is x - y + 4 = 0.
Explanation: pls mark me as brainliest, i will follow you
Answered by
2
Answer:
Explanation:
Given :
Angle making with positive 'x' axis is 45.
Line making angle ( ω ) = 45 + 90 = 135 [ By exterior angle property ]
Distance from origin P = 2 √ 2 unit .
We have normal form equation :
x cos ω + y sin ω = P
Putting value here we get :
x cos 135 + y sin 135 = 2 √ 2
x cos ( 90 + 45 ) + y sin ( 90 + 45 ) = 2 √ 2
x . - sin 45 + y cos 45 = 2 √ 2
- x / √ 2 + y √ 2 = 2 √ 2
Multiply whole equation by √ 2 :
- x + y = 4
x - y + 4 = 0
Therefore , the equation of line is x - y + 4 = 0.
Similar questions
Social Sciences,
5 months ago
Math,
5 months ago
History,
5 months ago
English,
10 months ago
Math,
10 months ago