Math, asked by sourimasaha, 8 months ago

find the equation of the line parallel to 2x+5y -9=0 and passing through the mid point of the line segment joining A(2,7) and B(-4,1)​

Answers

Answered by amansharma264
44

EXPLANATION.

Equation of the line parallel to 2x + 5y - 9 = 0

mid point of line segment = A ( 2,7) and B ( -4,1)

 \sf : \implies \:  equation \: of \: parallel \: lines \:  = 2x + 5y - 9 = 0 \\  \\ \sf : \implies \: slope \: of \: parallel \: lines \:  =  \frac{ - a}{b} \\  \\  \sf : \implies \: slope \: of \: the \: line \:  = 2x + 5y - 9 = 0 \:  \: is \:  =  \frac{ - 2}{5}

\sf : \implies \: mid \: points \: are \:  A(2 , 7) \:  \: and \:  \:  B ( - 4 , 1) \\  \\ \sf : \implies \: coordinates \: \:are \:  = ( \frac{2 - 4}{2}   ,  \frac{7  + 1}{2} ) \\  \\ \sf : \implies \: coordinates \: are \:  = ( - 1 , 4)

 \sf : \implies \: equation \: of \: line \:  \implies \: (y -  y_{1}) = m(x -  x_{1}) \\  \\ \sf : \implies \: (y - 4) =  \frac{ - 2}{5}(x + 1) \\  \\  \sf : \implies \: 5(y - 4) =  - 2(x + 1) \\  \\ \sf : \implies \: 5y - 20 =  - 2x - 2 \\  \\ \sf : \implies \: 5y + 2x = 18

 \sf : \implies \:  \green{{ \underline{equation \: of \: line \:  = 5y + 2x = 18}}}

Answered by Anonymous
114
2x + 5y = 0


5y = 2x + 9


 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: y =  \frac{2}{5} x +  \frac{9}{5}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: y = mx + c \:  \:  \: m - \: slofe

 \red{ \boxed{ \green{m =  \frac{2}{5} }}}

 \red{ \boxed{ \green{ m_{1}m_{2} =  - 1} }}

 \: m_{2} \times    - \frac{ 2}{5}  =  - 1 = m_{2} =  - 1x  +  \frac{5}{2}  =  \red{ \boxed{ \frac{5}{2}}}

 \big(2,7 \big), \big( - 4,1 \big)

 \sf \: mid \: point \bigg( \frac{ x_{1} +x_{2} }{2} , \frac{y_ +  y_{2} }{ 2}  \bigg) =  \bigg( \frac{2 + ( - 4)}{2} ,  \frac{7 + 1}{2}  \bigg)

 \bigg( \frac{ - 2}{2} , \frac{8}{2}  \bigg) =  \bigg( - 1,4 \bigg)

 \sf \: poin t \:  \: and \:  \: slope

 \bigg(y -  y_{1} \bigg) = m \bigg(x +  x_{1} \bigg)

 \color{red} \bigg(y - 4 \bigg) =  \frac{5}{2}  \bigg(x + 1 \bigg)


 \color{red}2y - 8 = 5x + 5


 \blue{ \fbox{ \color{blue}5x - 2y + 13 = 0}}


Similar questions