Math, asked by suvarahul1207, 11 months ago

Find the equation of the line passing through the intersection of the lines 3x-4y+1=0 and 5x+y-1=0 and cuts off equal intercepts on both the axis

Answers

Answered by Anonymous
41

Question :

Find the equation of the line through the intersection of 3x-4y+1=0 and 5x+y-1=0 which cuts off equal intercepts from the axes.

Solution:

The equation of any line through the point of intersection from the lines

3x-4y+1=0 and 5x+y-1=0

(3x - 4y + 1) + k(5x + y - 1) = 0 .......(1) \:  \\  \\ or \:  \: (3x + 5k)x + (k - 4)y + (1 - k) = 0 \\  \\ or \:  \: (5k + 3)x + (k - 4)y = k - 1 \\  \\ or \:  \: ( \frac{5k + 3}{k - 1} )x + ( \frac{k - 4}{k - 1} )y = 1  \\  \\ or \:  \:  \frac{x}{ \frac{k - 1}{5k + 3} }  +  \frac{y}{ \frac{k - 1}{k - 4} }  = 1 \\  \\ intercepts \: are \:  \frac{k - 1}{5k + 1}  \: and \:  \frac{k - 1}{k - 4}

But intercepts are equal

∴  \:  \: \frac{k - 1}{5k + 3}  =  \frac{k - 1}{k - 4}  \\  \\ ∴ \:  \frac{1}{5k + 3}  =  \frac{1}{k - 4} \\  \\  ∴ \:  5k + 3 = k - 4 \\  \\ ∴ \: 4k =  - 7 \\  \\ ∴ \: k =  \frac{ - 7}{4}

putting this value of k in (1) we get,

(3x - 4y + 1) -  \frac{7}{4} (5x + y - 1)  = 0\\  \\ or \: 4(3x - 4y + 1) - 7(5x + y - 1) = 0 \\  \\ or \:  12x - 16y + 4 - 35x - 7y + 7 = 0 \\  \\ or \:  \:  - 23x - 23y + 11 = 0 \\  \\ or \:  \: 23x + 23y - 11

Similar questions