Math, asked by A716, 7 months ago

Find the equation of the line passing through the point (1,3)and making an angle of 45° with
the line x-3y+4=0​

Answers

Answered by sonal1305
13

Refer to attachment for diagram.

\: \:

{\huge{\underline{\sf {\pink{Answer}}}}}

\: \:

\boxed{ 2x \: + \: y \: - \: 5 \: = \: 0 }

\: \:

{\huge{\underline{\sf {\pink{Explanation :}}}}}

\: \:

Given :

\: \:

Line : x - 3y + 4 = 0

\sf \theta = 45 \degree

\: \:

To Find :

\: \:

Equation of required line.

\: \:

Solution :

\: \:

\sf \: Slope \: of \: line \:  =  \frac{ - (coefficient \: of \: x)}{coefficient \: of \: y} \\

= \frac{-(-3)}{1} \\

= 3

\: \:

Angle = 45°

\sf \: tan \:  \theta =  \frac{{m}_{1} - {m}_{2}}{1 + {m}_{1}{m}_{2}} \\

 \sf \: tan \:  45° =  \frac{{m}_{1} - 3}{1 + {m}_{1} 3} \\

\sf \: 1 =  \frac{m - 3}{1 + 3m} \\

↬ 1 + 3m = m - 3

↬ 2m = - 4

↬ m = -2

\: \:

Given point on the line = ( 1 , 3 )

Slope of given line = - 2

\: \:

Equation of line :

\: \:

\sf \: y - {y}_{1} = m(x - {x}_{1})

\sf \: y - 3 = -2(x - 1)

\sf \: y - 3 = -2x + 2

\sf \: 2x + y - 5 = 0

Attachments:
Similar questions