Physics, asked by Anonymous, 6 months ago

Find the equation of the line passing through the points
(a cosa, a sin a) and (a cos B, a sin B).


Don't spam otherwise it will be report your answer. ​

Answers

Answered by Asterinn
17

We know that :-

\tt \: Equation  \: of  \: line \:  passing \:  through  \: points  \: (x_1 , y_1) \:  and \:  (x_2 , y_2) : \\  \\ \boxed {  \boxed {\tt  \large\longrightarrow y -  y_1 = (x-x_1)\bigg(  \dfrac{y_2-y_1}{ x_2-x_1}   \bigg )}} \\  \\ \tt \rightarrow  \: here \: \bigg(  \dfrac{y_2-y_1}{ x_2-x_1}   \bigg ) is \: slope \: of \: line

Now, here :-

 \bull \:  \:  \tt x_1 = a \:  Cos A \\ \\  \bull \:  \: \tt y_1 =  a \:  Sin A\\ \\\bull \:  \:   \tt x_2 = a \:  Cos B  \\ \\\bull \:  \:   \tt y_2 = a \:  Sin B

\tt \longrightarrow y -  a \:  Sin  \: A  = (x-a \:  Cos A)\bigg(  \dfrac{a \:  sin B-a \:  sin A}{ a \:  cos B -a \:  Cos A}   \bigg )

\tt \longrightarrow y -  a \:  Sin  \: A  = (x-a \:  Cos A)\bigg(  \dfrac{ \:  sin B- \:  sin A}{  \:  cos B - \:  Cos A}   \bigg )

\tt \longrightarrow( y -  a \:  Sin  \: A  )(cos B - \:  Cos A)= (x-a \:  Cos A)( sin B- \:  sin A)

Answered by janhavi0444
1

Answer:

y is ur mood off

thanks for free points

Similar questions