Math, asked by shinshe1556, 2 months ago

Find the equation of the line which passes through the point of intersection of the lines y+2x=8 and 2y-x=6 and the point (4,3)

Answers

Answered by TrustedAnswerer19
34

Answer:

Given,

 \bf \: y + 2x = 8  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\    \bf \implies \: 2x + y - 8 = 0 \:  \:  \:  \:  -  -  -  - (1) \\  \\ and \\  \\ 2y - x = 6  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\    \bf \implies \: x  - 2y + 6 = 0 \:  \:  \:  \:  -  -  -  - (2)

We have to find :

A linear equation which is passing through the intersection point of eqn.(1) and eqn.(2)

So our equation is :

 \bf2x + y - 8 + k(x - 2y + 6) = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\    \bf \implies \: 2x + y - 8 + kx - 2ky + 6k = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\    \bf \implies \: (2 + k)x + (1 - 2k)y  - 8 + 6k = 0 \:  \:  \:  \:  -  -  - (3)

Eqn.(3) is also passing through the point (4,3)

so (4,3) point will satisfy the equation.

Now,

(2 + k)x + (1 - 2k)y  - 8 + 6k = 0 \:  \:  \\    \bf \implies \: (2 + k) \times 4 + (1 - 2k) \times 3 - 8 + 6k = 0 \\    \bf \implies \: 8 + 4k + 3 - 6k - 8  + 6k = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\    \bf \implies \: 4k + 3 = 0 \\    \bf \implies \: k =  -  \frac{3}{4}

put the value of k in eqn.(3)

(2  -  \frac{3}{4} )x + (1  +  2 \times  \frac{3}{4} )y  - 8  - 6 \times  \frac{3}{4} = 0  \\  \\    \bf \implies \:  \frac{5x}{4}  +  \frac{5y}{2}  -  \frac{25}{2}  = 0       \\ { \bf \implies \: 5x + 10y - 50 = 0} \\     \green{ \boxed{\bf \implies \: x + 2y - 10 = 0}}

Attachments:
Similar questions