Math, asked by Anu039, 1 year ago

find the equation of the line which passes through the point (-1,2) and whose distance from origin is one unit ​

Answers

Answered by Anonymous
45
 \textsf{\underline {\Large {Straight Lines}}} :

Given, Point = ( - 1, 2 )

x = - 1, y = 2

Equation of line,

 \boxed{\mathsf{(\:y\:-\:y_0 \:)\:=\:m(\:x\:-\:x_0\:)}}

Here, m = Slope of the line

 \mathsf{(\:2\:-\:y_0 \:)\:=\:m(\:-1\:-\:x_0\:)}

 \mathsf{(\:2\:-\:y_0 \:)\:=\:-m \:-mx_0}

 \mathsf{(\:mx_0\:-\:y_0 \:)\:=\:-m \:-\:2}

➡️  \mathsf{\:mx_0\:-\:y_0\:+m \:+\:2\:=\:0} --> ( i )

Distance from origin, d = 1 unit

Coordinates of origin,  \mathsf{( \:x_1,\: y_1\:)} = ( 0, 0 )

Perpendicular distance formula,

 \boxed{\mathsf{d\:=\:{\dfrac{|Ax_{1} \:+\:By_{1} \:+\:C|} {\sqrt{{A} ^{2}\:+\:{B}^{2}}}}}}

Here,

A =  \mathsf{(\:m\:)}

B =  \mathsf{(\:-y\:)}

C =  \mathsf{(\:m\:+\:2\:)}

Putting these values,

1 = \mathsf{d\:=\:{\dfrac{|(\:m\:)(0) \:+\:(\:-1\:)( 0 ) \:+\:(\:m\:+\:2\:)|} {\sqrt{{(\:m\:)} ^{2}\:+\:{(\:-1\:)}^{2}}}}}

1 = \mathsf{d\:=\:{\dfrac{(\:m\:+\:2\:)} {\sqrt{{m}^{2}\:+\:1}}}}}

\mathsf{\sqrt{{m} ^{2}\:+\:1} \:=\:m\:+\:2}

\mathsf{{m} ^{2}\:+\:1\:=\:{(m\:+\:2)}^{2}}

\mathsf{{m} ^{2}\:+\:1\:=\:{m} ^{2}\:+\:4\:+\:4m}

\mathsf{4m\:-\:3 \:= \:0}

\mathsf{4m\:= \:3}

\mathsf{m\:= \:{\dfrac{3}{4}}}

Putting value of ' m' in equation ( i ),

Replacing  \mathsf{x_0\:by\:x\:and\:y_0\:by\:y}

 \mathsf{\:mx_0\:-\:y_0\:+m \:+\:2\:=\:0}

 \mathsf{\dfrac{3}{4}x\:-\:y\:+{\dfrac{3}{4}\:+\:2\:=\:0}}

 \mathsf{\dfrac{3}{4}x\:-\:y\:{\dfrac{11}{4}}\:=\:0}

➡️ Equation of line,

 \boxed{\mathsf{3x\:-\:4y\:+\:11\:=\:0}}

Anonymous: 3x/4 - y + 11/4 = 0 in Last steps ( there is + sign b/w y and 11/4)
Answered by keshavkanwali
0

Answer:

:

Given, Point = ( - 1, 2 )

x = - 1, y = 2

Equation of line,

Here, m = Slope of the line

➡️  --> ( i )

Distance from origin, d = 1 unit

Coordinates of origin,  = ( 0, 0 )

Perpendicular distance formula,

Here,

A =  

B =  

C =  

Putting these values,

1 =  

1 =  

Putting value of ' m' in equation ( i ),

Replacing  

➡️ Equation of line,

Step-by-step explanation:

Similar questions