Find the equation of the locus of a point the sum of whose distances from (0,2)and (0,-2) is 6
pleawe follow me guys...
Answers
GIVEN :–
• Sum of distances of a point from (0,2) and (0,-2) is 6.
TO FIND :–
• Locus of the point = ?
SOLUTION :–
• Let the point be (x , y) .
▪︎ Distance of the point from (0,2) is –
▪︎ Distance of the point from (0,-2) –
● According to the question –
• Using eq.(1) and eq.(2) –
• Square on both sides –
• Square on both sides –
Given :-
•The sum of distances of a point from (0,2) , (0,-2) is 6 .
To Find :-
• The locus of a point.
Solution :-
• Consider, the two points are R and A.
•Distance of the point from (0,2) is,
=> D1 = √( 0 - R)² + (2 - A)²
=> D1 = √(R)² + (2 - A)²
•Distance of the point from (0,-2) is,
=> D2 = √(0 - R)² + (-2 - A)²
=> D2 = √(R)² + (2 + A)²
•Given that, Sum of distances = 6
=> .°. D1 + D2 = 6
[ Putting the values ]
=> √[(R)² + (2 - A)² + √(R)² + (2 + A)²] = 6
[ Square on each sides. ]
=> (√[(R)² + (2 - A)² + √(R)² + (2 + A)²])²=(6)²
=> (R)² + (2 - A)² + (R)² + (2 + A)² + 2√(R)² + (2 - A)² √(R)² + (2 + A)² = 36 .
=> 2R² + 4 + A² - 4A + 4 + A² + 4A + 2 + 2√(R)² + (2 - A)² √(R)² + (2 + A)² = 36
=> 2R²+8 +2A²+ 2√(R)² + (2 - A)²√(R)²+(2 + A)² = 36
=> 2R² + 2A² + 2√(R)² + (2 - A)²√(R)²+(2 + A)² = 28
=> R² + A² +√(R)² + (2 - A)²√(R)²+(2 + A)² = 14
=> R² + A² +√{(R)² + (2 - A)² } { (√R)² + (2 + A)²} = 14
• After solving we get,
=> R² + A² - 14 = √R^4 + 2R²(4 + A)² + (4 - A²)²
[ Square on each sides. ]
=>(R²+A²-14)²= R^4+2R²(4+A²)+(4 - A²)²
Hence, the locus of point is (R²+A²-14)² = R^4+2R²(4+A²)+(4 - A²)² .