Math, asked by ChandrikaSruthi, 7 months ago

Find the equation of the locus of a point the sum of whose distances from (0,2)and (0,-2) is 6
pleawe follow me guys...​

Answers

Answered by BrainlyPopularman
32

GIVEN :

• Sum of distances of a point from (0,2) and (0,-2) is 6.

TO FIND :

Locus of the point = ?

SOLUTION :

Let the point be (x , y) .

▪︎ Distance of the point from (0,2) is –

  \\ \implies { \bold{ d_{1} =  \sqrt{ {(0 - x)}^{2} +  {(2 - y)}^{2}  } }} \\

  \\ \implies { \bold{ d_{1} =  \sqrt{ {(x)}^{2} +  {(2 - y)}^{2}  }  \:  \:  \:  \:  \:  \:  -  -  - eq.(1)}} \\

▪︎ Distance of the point from (0,-2) –

  \\ \implies { \bold{ d_{2} =  \sqrt{ {(0 - x)}^{2} +  {( - 2 - y)}^{2}  } }} \\

  \\ \implies { \bold{ d_{2} =  \sqrt{ {(x)}^{2} +  {(2 + y)}^{2}  }  \:  \:  \:  \:  \:  \:  -  -  - eq.(2)}} \\

● According to the question –

  \\ \implies { \bold{ Sum \:  \: of \:  \: distances = 6}} \\

  \\ \implies { \bold{ d_{1} + d_{2}= 6}} \\

• Using eq.(1) and eq.(2) –

  \\ \implies { \bold{ \sqrt{ {(x)}^{2} +  {(2 - y)}^{2}  } + \sqrt{ {(x)}^{2} +  {(2 + y)}^{2}  } = 6}} \\

• Square on both sides –

  \\ \implies { \bold{  \left(\sqrt{ {(x)}^{2} +  {(2 - y)}^{2}  } + \sqrt{ {(x)}^{2} +  {(2 + y)}^{2}  } \right)^{2}  =  {6}^{2} }} \\

  \\ \implies { \bold{  { {(x)}^{2} +  {(2 - y)}^{2}  } +{ {(x)}^{2} +  {(2 + y)}^{2}  }  + 2\sqrt{ {(x)}^{2} +  {(2 - y)}^{2}  }\sqrt{ {(x)}^{2} +  {(2  +  y)}^{2}  }= 36 }} \\

  \\ \implies { \bold{  { 2{x}^{2}} + 4 +  {y}^{2}  - 4y + 4  + {y}^{2} + 4y  + 2\sqrt{ {(x)}^{2} +  {(2 - y)}^{2}  }\sqrt{ {(x)}^{2} +  {(2  +  y)}^{2}  }= 36 }} \\

  \\ \implies { \bold{  { 2{x}^{2}} + 8 +  2{y}^{2}  + 2\sqrt{ {(x)}^{2} +  {(2 - y)}^{2}  }\sqrt{ {(x)}^{2} +  {(2  +  y)}^{2}  }= 36 }} \\

  \\ \implies { \bold{  { 2{x}^{2}}  +  2{y}^{2}  + 2\sqrt{ {(x)}^{2} +  {(2 - y)}^{2}  }\sqrt{ {(x)}^{2} +  {(2  +  y)}^{2}  }= 28 }} \\

  \\ \implies { \bold{  { {x}^{2}}  +  {y}^{2}  + \sqrt{ {(x)}^{2} +  {(2 - y)}^{2}  }\sqrt{ {(x)}^{2} +  {(2  +  y)}^{2}  }= 14 }} \\

  \\ \implies { \bold{  { {x}^{2}}  +  {y}^{2}  + \sqrt{  \{{(x)}^{2} +  {(2 - y)}^{2}  \}  \{{(x)}^{2} +  {(2  +  y)}^{2}\}}= 14 }} \\

  \\ \implies { \bold{  { {x}^{2}}  +  {y}^{2}  + \sqrt{ {x}^{4}  +  {x}^{2} {(2 + y)}^{2} +  {x}^{2} {(2 - y)}^{2} +  { \{(2 - y)(2 + y) \}}^{2} }= 14 }} \\

  \\ \implies { \bold{  { {x}^{2}}  +  {y}^{2}  + \sqrt{ {x}^{4}  + 2 {x}^{2} {(4 +  {y}^{2} )} +  {(4 -  {y}^{2}) }^{2} }= 14 }} \\

  \\ \implies { \bold{  { {x}^{2}}  +  {y}^{2}   - 14  = \sqrt{ {x}^{4}  + 2 {x}^{2} {(4 +  {y}^{2} )} +  {(4 -  {y}^{2}) }^{2} }}} \\

• Square on both sides –

  \\ \implies { \bold{ ( { {x}^{2}}  +  {y}^{2}   - 14 )^{2}  = { {x}^{4}  + 2 {x}^{2} {(4 +  {y}^{2} )} +  {(4 -  {y}^{2}) }^{2} }}} \\


Vamprixussa: Great answer !
Answered by ThakurRajSingh24
32

Given :-

•The sum of distances of a point from (0,2) , (0,-2) is 6 .

To Find :-

• The locus of a point.

Solution :-

• Consider, the two points are R and A.

•Distance of the point from (0,2) is,

=> D1 = √( 0 - R)² + (2 - A)²

=> D1 = √(R)² + (2 - A)²

•Distance of the point from (0,-2) is,

=> D2 = √(0 - R)² + (-2 - A)²

=> D2 = √(R)² + (2 + A)²

•Given that, Sum of distances = 6

=> .°. D1 + D2 = 6

[ Putting the values ]

=> √[(R)² + (2 - A)² + √(R)² + (2 + A)²] = 6

[ Square on each sides. ]

=> (√[(R)² + (2 - A)² + √(R)² + (2 + A)²])²=(6)²

=> (R)² + (2 - A)² + (R)² + (2 + A)² + 2√(R)² + (2 - A)² √(R)² + (2 + A)² = 36 .

=> 2R² + 4 + A² - 4A + 4 + A² + 4A + 2 + 2√(R)² + (2 - A)² √(R)² + (2 + A)² = 36

=> 2R²+8 +2A²+ 2√(R)² + (2 - A)²√(R)²+(2 + A)² = 36

=> 2R² + 2A² + 2√(R)² + (2 - A)²√(R)²+(2 + A)² = 28

=> R² + A² +√(R)² + (2 - A)²√(R)²+(2 + A)² = 14

=> R² + A² +√{(R)² + (2 - A)² } { (√R)² + (2 + A)²} = 14

After solving we get,

=> R² + A² - 14 = √R^4 + 2R²(4 + A)² + (4 - A²)²

[ Square on each sides. ]

=>(R²+A²-14)²= R^4+2R²(4+A²)+(4 - A²)²

Hence, the locus of point is (R²+A²-14)² = R^4+2R²(4+A²)+(4 - A²)² .


Vamprixussa: Great answer !
Similar questions