find the equation of the locus of p if A(2,3) B(,2,-3)and PA+PB=8
Answers
Answered by
101
Answer:
Given A = (2, 3)
B = (2, –3)
Let P(x, y) be any point on the locus.
Given geometric condition is
PA + PB = 8 ⇒ PA = 8 – PB
⇒ PA² = (8 – PB)²
⇒ PA² = 64 + PB² – 16PB
⇒ (x – 2)²+(y – 3)²= 64 + (x – 2)²+ (y + 3)²- 16√((x - 2)²+ (y + 3)²)
⇒ y² – 6y + 9 – y² – 6y – 9 – 64 = – 16√(x² - 4x + 4 + y² + 6y + 9)
⇒ (–12y – 64) = –16√(x² + y² - 4x + 6y + 13)
⇒ (3y + 16) = 4√(x² + y² - 4x + 6y + 13)
S.O.B.S
⇒ (3y + 16)² = 16 (x² + y² – 4x + 6y + 13)
⇒ 9y² + 256 + 96y = 16x² + 16y² – 64x + 96y + 208
⇒ 16x² + 7y² – 64x – 48 = 0
∴ The locus of P is 16x² + 7y² – 64x – 48 = 0
plzz mark as brainliest
Similar questions