Math, asked by sravanithota24pb5694, 1 year ago

find the equation of the locus of p, if A=(2,3),B=(2,-3) and PA+PB=8

Answers

Answered by SteveSatwik
76
here is ur answer.......
Attachments:
Answered by pinquancaro
112

Answer:

The required equation of the locus is 16x^2+7y^2-64x-48=0

Step-by-step explanation:

Given :   A=(2,3),B=(2,-3) and PA+PB=8

To find : The equation of the locus of P?

Solution :

A = (2,3) and B(2,-3).  

Let P(x, y) be the moving points.  

Given, PA+PB=8

Using distance formula,

D=\sqrt {(x_{ 1 }-x_{ 2 })^{ 2 }+(y_{ 1 }-y_{ 2 })^{ 2 }}

PA=\sqrt{(2-x)^2+(3-y)^2}

PB=\sqrt{(2-x)^2+(-3-y)^2}

Substitute,

PA=8-PB

\sqrt{(2-x)^2+(3-y)^2}=8-\sqrt{(2-x)^2+(-3-y)^2}

Squaring both side,

(2-x)^2+(3-y)^2=64+(2-x)^2+(-3-y)^2-16(\sqrt{(2-x)^2+(-3-y)^2})

9+y^2-6y=64+9+y^2+6y-16(\sqrt{(2-x)^2+(-3-y)^2})

-12y=64-16(\sqrt{(2-x)^2+(-3-y)^2})

64+12y=16(\sqrt{(2-x)^2+(-3-y)^2})

16+3y=4(\sqrt{(2-x)^2+(-3-y)^2})

Again Squaring both side,

(16+3y)^2=16((2-x)^2+(-3-y)^2))

256+9y^2+96y=16(4+x^2-4x+9+y^2+6y)

256+9y^2+96y=208+16x^2-64x+16y^2+96y

16x^2+7y^2-64x-48=0

Therefore, The required equation of the locus is 16x^2+7y^2-64x-48=0

Similar questions