Math, asked by georginageorge723, 3 months ago

find the equation of the locus of the point P(x,y) that moves so that the ratio of PA to PB is 3:2 with points A(-6,5) and B (3, -1)​

Answers

Answered by amitnrw
1

Given :  point P(x,y) that moves so that the ratio of PA to PB is 3:2 with points A(-6,5) and B (3, -1)​

To Find : locus of the point P(x,y)

Solution:

P ( x , y)

A ( - 6 , 5)

B ( 3 , -1 )

PA² = ( x+6)²  +  ( y - 5)²

PB² = ( x - 3)² + ( y + 1)²

PA : PB  =  3 : 2

=> PA² : PB² = 9 : 4

=> 4 PA² = 9  PB²

=> 4 (  ( x+6)²  +  ( y - 5)² ) = 9 ( ( x - 3)² + ( y + 1)²)

=> 4(x² + 12x + 36 + y² - 10y + 25) = 9 ( x² -6x + 9 + y²  +2y + 1)

=> 4x²  + 48x + 4y² - 40y  + 244 = 9x² -54x + 9y²  + 18y + 90

=> 5x² + 5y²  - 102x +58y - 154 = 0

5x² + 5y²  - 102x +58y - 154 = 0  is  locus of the point P(x,y)

Learn More:

Find the value of k, if the point P (-2, 2) lies on the locus x² - 7x + ky ...

brainly.in/question/7293046

Find The Equation Of The Locus Of A Point P The Square Of Whose ...

brainly.in/question/11144004

Attachments:
Similar questions