Math, asked by ShravaniMR6625, 1 year ago

Find the equation of the parabola whose latus rectum is 4units and axis is the line 3x+4y-4=0 and tangent at vertex is 4x-3y+7=0

Answers

Answered by sprao534
14

Please see the attachment

Attachments:
Answered by amirgraveiens
15

The equation of parabola with the given conditions  is (3x+4y-4)^2=+20\times (4x-3y+7) or (3x+4y-4)^2=-20\times (4x-3y+7).

 

Step-by-step explanation:

Given:

Latus rectum = 4 units and axis is the line 3x+4y-4=0 and tangent at vertex is 4x-3y+7=0

Now using distance formula,

length of PN = |\frac{Ax_1+By_1+C}{A^2+B^2} |  

here (x_1, y_1)  is the point and the line is Ax+By+C=0.

length of PN =|\frac{3x+4y-4}{\sqrt{3^2+4^2} } |

Squaring both sides, we get

PN^2=(\frac{3x+4y-4}{\sqrt{3^2+4^2} } )^2

               =\frac{(3x+4y-4)^2}{3^2+4^2}

PN^2=\frac{(3x+4y-4)^2}{25}         (1)

Now PM = |\frac{Ax_1+By_1+C}{A^2+B^2} |

               = |\frac{4x-3y+7}{\sqrt{3^2+4^2} } |

               = |\frac{4x-3y+7}{\sqrt{25} } |

               =  |\frac{4x-3y+7}{5} } |

Now equation of parabola will be

 PN^2  = length of latus rectum \times PM

\frac{(3x+4y-4)^2}{25} = 4 \times |\frac{4x-3y+7}{5} } |   [from equation (1)]

{(3x+4y-4)^2}= 25\times 4\times|\frac{4x-3y+7}{5} |

{(3x+4y-4)^2}= 5\times 4\times|{4x-3y+7 |

{(3x+4y-4)^2}= 20\times|{4x-3y+7 |

Here mode determines that parabola can be either be on positive X axis or negative X axis.

Therefore the vertex 4x-3y+7=0 can be positive or negative.

Hence the equation of parabola with the given conditions  is (3x+4y-4)^2=+20\times (4x-3y+7) or (3x+4y-4)^2=-20\times (4x-3y+7).

 

Attachments:
Similar questions