Math, asked by superdevil, 6 months ago

find the equation of the plane passing through the point (3, -2, 1) and perpendicular to the vector (4, 7, -4)

Answers

Answered by MaheswariS
3

\textbf{To find:}

\textsf{The equation of the plane passing through (3,-2,1) and}

\textsf{perpendicular to the vector (4,7,-4)}

\textbf{Solution:}

\textsf{Formula used:}

\mathsf{The\;equation\;of\;the\;plane\;passing\;through\;(x_1,y_1,z_1)}

\mathsf{perpendicuar\;to\;(a,b,c)\;is}

\boxed{\mathsf{a(x-x_1)+b(y-y_1)+c(z-z_1)=0}}

\textsf{The required plane is}

\mathsf{a(x-x_1)+b(y-y_1)+c(z-z_1)=0}

\mathsf{4(x-3)+7(y+2)-4(z-1)=0}

\mathsf{4x-12+7y+14-4z+4=0}

\boxed{\mathsf{4x+7y-4z+6=0}}

\textbf{Find more:}

Find vector equation of plane which passes through the points (3,2,1) and (0,1,7) and is parallel to line r=2i-j+k+l(i-j-k)

https://brainly.in/question/8252354

Answered by Anonymous
3

\textbf{To find:}

\textsf{The equation of the plane passing through (3,-2,1) and}

\textsf{perpendicular to the vector (4,7,-4)}

\textbf{Solution:}

\textsf{Formula used:}

\mathsf{The\;equation\;of\;the\;plane\;passing\;through\;(x_1,y_1,z_1)}

\mathsf{perpendicuar\;to\;(a,b,c)\;is}

\boxed{\mathsf{a(x-x_1)+b(y-y_1)+c(z-z_1)=0}}

\textsf{The required plane is}

\mathsf{a(x-x_1)+b(y-y_1)+c(z-z_1)=0}

\mathsf{4(x-3)+7(y+2)-4(z-1)=0}

\mathsf{4x-12+7y+14-4z+4=0}

\boxed{\mathsf{4x+7y-4z+6=0}}

Similar questions