Math, asked by nessaa, 20 days ago

Find the equation of the plane that contains the point A(2, 1, – 1) and is perpendicular to the line of intersection of the planes 2x + y – z = 3 and x + 2y + z = 2.​

Answers

Answered by mathdude500
3

Appropriate Question :-

Find the equation of the plane that contains the point A(2, 1, – 1) and through the line of intersection of the planes 2x + y – z = 3 and x + 2y + z = 2.

\large\underline{\bf{Solution-}}

The required equation of plane which passes through the line of intersection of the planes 2x + y – z - 3 = 0 and x + 2y + z - 2 = 0 is given by

\rm :\longmapsto\:2x + y - z - 3 + k(x + 2y + z - 2) = 0

\rm :\longmapsto\:2x + y - z - 3 + kx + 2ky + kz - 2k = 0

\rm :\longmapsto\:(k + 2)x + (2k + 1)y + (k - 1)z - (2k + 3) = 0 -  - (1)

Since, this plane contains the point (2, 1, - 1),

Thus,

\rm :\longmapsto\:(k + 2)2 + (2k + 1)1 -  (k - 1) - (2k + 3) = 0

\rm :\longmapsto \: 2k + 4 + \cancel{2k} +1 - k  + 1 -  \cancel{2k} -  3 = 0

\rm :\longmapsto\:k  +  3 = 0

\bf\implies \:k \:  =  -  \: 3

Put value of k = - 3, in equation (1), we get

\rm :\longmapsto\:( - 3 + 2)x + ( - 6 + 1)y + ( - 3 - 1)z - ( - 6 + 3) = 0

\rm :\longmapsto\: -  \: x  - 5y  - 4z  + 3= 0

\rm :\longmapsto\: \: x   + 5y   + 4z   -  3= 0

Additional Information :-

Let us consider two planes,

\rm :\longmapsto\: \vec{r}. \: \vec{n_1} = d

and

\rm :\longmapsto\: \vec{r}. \: \vec{n_2} = d

Then,

1. Two planes are perpendicular iff

\rm :\longmapsto\:\vec{n_1}. \: \vec{n_2} = 0

2. Two planes are parallel iff

\rm :\longmapsto\:\vec{n_1} \:  \times  \: \vec{n_2} = 0 \:  \:  \: or \:  \:  \: \vec{n_1} = k \: \vec{n_2}

3. Angle between two planes is given by

\rm :\longmapsto\:cos\theta = \dfrac{\vec{n_1} \: . \: \vec{n_2}}{ |\vec{n_1}|  \:  |\vec{n_2}| }

Similar questions