Find the equation of the plane through the point (2,3,5) and perpendicular to the planes 2x-3y+z=2, 4x+y-3z+1=0
Answers
Answered by
0
The normal vector to the plane 2x-3y+z-2=0 is
2\vec{i}-3\vec{j}+\vec{k}
The normal vector to the plane 4x+y-3z+1=0 is 4\vec{i}+\vec{j}-3\vec{k}
Hence the required plane passes through the point (2,3,.5) and parallel to the vectors 2\vec{i}-3\vec{j}+\vec{k} and 4\vec{i}+\vec{j}-3\vec{k}
Equation of the required plane is
\left|\begin{array}{ccc}x-x_1&y-y_1&z-z_1\\l_1&m_1&n_1\\l_2&m_2&n_2\end{array}\right|=0
\left|\begin{array}{ccc}x-2&y-3&z-5\\2&-3&1\\4&1&-3\end{array}\right|=0
Expanding along R_1, we get
(x-2)(8)-(y-3)(-10)+(z-5)(14)=0
8(x-2)+10(y-3)+14(z-5)=0
Divide both sides by 2
4(x-2)+5(y-3)+7(z-5)=0
4x-8+5y-15+7z-35=0
4x+5y+7z-58=0
Similar questions
Social Sciences,
6 months ago
Hindi,
6 months ago
Math,
1 year ago
Biology,
1 year ago
Science,
1 year ago