Math, asked by preety41, 1 year ago

find the equation of the sphere whose center is (1,0,-1) and which passes through the point (2,-1,1)

Answers

Answered by Anonymous
7
hey mate
here's the solution
Attachments:
Answered by Sharad001
77

❏QuesTion:-

 \sf  \red{Find  \: the \:  equation  \: of \:  the \:  sphere  \: whose} \\   \green{\sf centre \:  is  \: (1, 0, - 1) \:  and  \:  which \:  passes } \\ \purple{ \sf through  \: the point</p><p>(2 - 1, 1)}

❏Answer :-

\green{\boxed{\sf \red{  \star } \orange{ {(x - 1)}^{2}  }+   \red{{y}^{2}  +  } \pink{{(z + 1)}^{2} } = 6}} \:   \\  \sf  or \:  \red{ you \: can \: minimize \: it \: by \: opening} \\  \sf \: whole \: square

❏To Find :-

→ Equation of sphere .

❏SoluTion :-

 \sf \blue{ consider \: an \: eqation \: of \: sphere \:}  \\ \sf whose \: centre \: is(a , b, c) \: and \: passing \\  \sf \orange{ through \: the \: points \: (l, m, n)} \: with \: \\  \sf radius \: r. \\  \\  \to \sf  {(x - a)}^{2}  +  {(y - b)}^{2}  +  {(z - c)}^{2}  =  {r}^{2}  \\  \\  \sf \: therefore \\   \sf \blue{ we \: have} \\   \star \sf (a , b, c) \:  \leadsto \green{ (1 , 0,  - 1) }\\  \star \orange{ \sf(l, m, n)  \leadsto} \: (2 ,  - 1, 1) \\    \therefore \\  \\  \to \sf  \red{{(x - 1)}^{2} } +  \green{ {(y - 0)}^{2}}  +   \pink{{(z + 1)}^{2}}  =  {r}^{2}  \\ \bf  \orange{passing \: through }\: (2 ,  - 1, 1) \\  \\  \to \sf  \blue{ {(2 - 1)}^{2}  + } \green{ {( - 1 - 0)}^{2}  + } \purple{ {(1 + 1)}^{2}  =  {r}^{2}  }\\  \\  \to \sf1 + \red{  1+ 4 = } {r}^{2}  \\  \\  \to \boxed{ \sf r = \green{  \sqrt{ \pink{6}}} } \\  \\  \sf hence \:  \red{ equation} \: of \: sphere  \: \red{ is }\\  \\( \because \sf {r}^{2}  = 6)   \\     \green{\boxed{\sf \red{  \star } \orange{ {(x - 1)}^{2}  }+   \red{{y}^{2}  +  } \pink{{(z + 1)}^{2} } = 6}}

Hope it helps you .

Similar questions