Math, asked by sivanigontu6751, 4 months ago

Find the equation of the straight line passing through the point (3,-4) and perpendicular to the line 5x+3y-1=0

Answers

Answered by amansharma264
12

EXPLANATION.

equation of the straight line passing through

the point (3,-4).

perpendicular to the line = 5x + 3y - 1 = 0.

Equation of slope = y = mx + c.

→ 5x + 3y - 1 = 0

→ 3y = 1 - 5x

→ y = 1/3 - 5x/3.

Slope of perpendicular = -1/m = -1/-5/3 = 3/5.

Formula of perpendicular slope.

→ slope = b/a = 3/5.

Equation of straight line.

 \sf \: : \implies \: (y -   y_{1}) = m(x -  x_{1})

Line passes through point (3, -4).

→ ( y - (-4)) = 3/5 ( x - 3).

→ ( y + 4 ) = 3/5 ( x - 3 ).

→ 5 ( y + 4 ) = 3( x - 3 ).

→ 5y + 20 = 3x - 9.

→ 5y - 3x = -29.

Answered by ItźDyñamicgirł
14

Question

Find the equation of the straight line passing through the point ( 3, -4 ) and perpendicular to the line 5x + 3y - 1 = 0

Solution

5x - 3y + 1 = 0

- 3y = -1 - 5x

 \sf \: y =   \dfrac { - 1}{ - 3}  \dfrac{ - 5x}{ - 3}  \\ \\  y =    \sf\dfrac{1}{3}  +  \dfrac{5x}{3}  \\  \\  \sf \: y =  \frac{5x}{3}  +  \frac{1}{3}  \\  \\ \sf y = mx + c

 \sf \: so \: slope \: (m) =  \dfrac{5}{3}

 \sf \: for \:a  \: perpendicular \: line \: (m) =  \dfrac{1}{ - m}  =  \dfrac{1}{ - 5 /3}   \\  \\  =   \sf \: \frac{ - 3}{5}  = m

for a line passing through ( 4 , -3 )

 \sf \: y =  y_{1} = m(x -  x_{1})

 \sf \: y - ( - 3) =  \dfrac{ - 3}{5}  \\  \\  \sf \: y + 3 =  \frac{ - 3}{5} (x - 4)

 \sf \: y + 3 =  \dfrac{ - 3x}{5}  +  \dfrac{12}{5}  \\  \\  \sf \: y + 3 =  \frac{ - 3x + 12}{5}  \\  \\ \sf 5y + 15 =  - 3x + 12 \\  \\  \sf \: 3x - 12 + 5y + 15 = 0 \\  \\  \sf \: 5y + 3x + 3 = 0

Therefore, perpendicular line 3x + 5y + 3 = 0

Similar questions