Math, asked by shawayush566p0uqen, 1 month ago

Find the equation of the straight line passing through the points (1, -1) and (-2, 5).​

Answers

Answered by trishasudheesh
0

Answer:

Equation of the straight line passing through the points A and B is x – intercept = 3, y – intercept = 3/2 Area of ∆OAB = 1/2|(x – intercept) ( y – intercept)| = 1/2|(3)(3/2) = 9/4 sq.units.Read more on Sarthaks.com - https://www.sarthaks.com/532891/find-the-equation-of-the-straight-line-passing-through-the-points-1-2-and-5-1-and-also-find

Answered by TrustedAnswerer19
11

Given the two points are (1,-1). and (-2,5)

we have to find :

The equation of the straight line passing through those points.

Solution:

{\blue{ \boxed{ \boxed{ \begin{array}{cc} \bf  \to \: we \: know \: that :  \\  \\ \sf \:  the \:  equation \:  of \:  the \:  straight  \: line \\  \sf \: passing  \: through \:  the  \: points \:  \\  \rm \: (x_1,y_1) \: and \:   \: (x_2,y_2) \:  \: is \:  :  \\  \\  \red{ \boxed{ \blue{ \rm \:  \frac{x - x_1}{x_1 - x_2}  =  \frac{y - y_1}{y_1 - y_2}}} } \\  \\ \end{array}}}}}

According to the question,

 \rm \: x_1 =1  \\  \rm \: x_2  =  - 2 \\  \rm \: y_1 =  - 1 \\  \rm \: y_2 = 5

So,

{\orange{ \boxed{ \boxed{ \begin{array}{cc} \rm \:the  \: equation \:  of  \: the  \: straight \:  line \\  \rm \:  passing  \: through \:  the \:  points  \:  \\  \rm \: (1, - 1) \: and \: ( - 2,5) \: is :  \\  \\  \\  \rm \:  \frac{x - 1}{1 - ( - 2)} =  \frac{y - ( - 1)}{ - 1 - 5}   \\  \\ \rm \implies \: \frac{x - 1}{1 + 2} =  \frac{y + 1}{ - 6}  \\  \\ \rm \implies \: \frac{x - 1}{ \cancel3}   =  \frac{y + 1}{ -  \cancel6_ {\: 2}} \\  \\ \rm \implies \:x - 1 =  \frac{y + 1}{ - 2}  \\  \\ \rm \implies \: - 2(x - 1) = y + 1 \\  \\ \rm \implies \: - 2x + 2 = y + 1 \\  \\ \rm \implies \:y + 2x - 1 = 0 \\  \\     \underbrace{\boxed{ \pink{\therefore \:  \rm \: y + 2x - 1 = 0}}}_{  \red{\sf \: answer}}\\  \\ \end{array}}}}}

Attachments:
Similar questions