Math, asked by MKBharadwaj, 7 months ago

Find the equation of the straight line which makes an angle
tan
^-1(2/3) with X-Axis

in the positive direction and Y – intercept cut off by it is 3​

Answers

Answered by tanejakca
0
See the photo attached for solution
Answered by MaheswariS
3

\underline{\textsf{Given:}}

\textsf{Angle of inclination of the line is}\,\mathsf{tan^{-1}(\dfrac{2}{3})}

\textsf{and y-intercept is 3}

\underline{\textsf{To find:}}

\textsf{The equation of the line}

\underline{\textsf{Solution:}}

\textsf{Let the angle of inclination of the line is}\;\mathsf{\theta}

\implies\mathsf{\theta=tan^{-1}(\dfrac{2}{3})}

\implies\mathsf{tan\,\theta=\dfrac{2}{3}}

\implies\textsf{Slope}\mathsf{=\dfrac{2}{3}}

\textsf{Now}

\textsf{The equation of the line is}

\mathsf{y=mx+c}

\implies\mathsf{y=\dfrac{2}{3}x+3}

\implies\mathsf{y=\dfrac{2x+9}{3}}

\implies\mathsf{3y=2x+9}

\implies\boxed{\mathsf{2x-3y+9=0}}

\underline{\textsf{Answer:}}

\textsf{The required line is 2x-3y+9=0}

Similar questions