Math, asked by CopyThat, 2 months ago

Find the equation of the tangent and the normal to the parabola x^2 - 4x - 8y + 12 = 0 at (4,3/2).

Answers

Answered by ⲘⲓssRσѕє
8

Answer:

\huge\fcolorbox{blue}{pink}{☃αղsաҽɾ☃}

 \bold{Equation \: of \: parabola \: is} \\  \\ ⇒ \:  {x}^{2}  - 4x - 8y + 12 = 0 \\  \\ ⇒ {(x - 2)}^{2}  - 4 = 8y  - 12 \\  \\ ⇒ \:  {(x - 2)}^{2}  = 8y - 8 \\  \\ ⇒ \:  {(x - 2)}^{2}  = 8(y - 1) \\  \\ ⇒ \: 4a =8 \\  \\ ⇒ \: a =  \frac{8}{4}  \\  \\  ⇒ \: a = 2

 \bold{Equation \: of \: tangents \: at (x1, y1) \: is} \\  \\ ⇒ \: (x - 2)(x1 - 2) = 2a(y - 1 + y1 - 1) \\  \\ ⇒ \: (x - 2)(4 - 2) = 2a (y - 1 + \frac{3}{2}  - 1 ) \\  \\ ⇒ \:  2(x - 2) = 4( \frac{2y - 1}{2} ) \\  \\ ⇒ \: x - 2y - 1 = 0

 \bold{Equation \: of \: normal \: will \: be  \: y – y1 = m(x – x1) }  \\  \\ \bold{ \: m-slope \: of \: normal \: Slope \: of \: tangent \: is: 1/2  \: Slope \: of \: normal \: is:  -2 }

⇒ \: y -  \frac{3}{2}  =  - 2(x - 4) \\  \\ ⇒ \: 2y - 3 =  - 4x + 16 \\  \\ ⇒ \: 4x + 2y - 19 = 0

\bold \red {hope \: it \: helps \: u \:  :) }

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Given curve is

\rm :\longmapsto\: {x}^{2} - 4x - 8y  + 12 = 0 -  -  - (1)

and

\rm :\longmapsto\:point \: \bigg(4, \dfrac{3}{2} \bigg)

Let assume that the coordinate is represented as P.

Now,

\rm :\longmapsto\: {x}^{2} - 4x - 8y  + 12 = 0

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: \dfrac{d}{dx}( {x}^{2} - 4x - 8y  + 12) = 0

\rm :\longmapsto\: \dfrac{d}{dx} {x}^{2} - 4\dfrac{d}{dx}x - 8\dfrac{d}{dx}y  + \dfrac{d}{dx}12= 0

\rm :\longmapsto\:2x - 4 - 8\dfrac{dy}{dx} = 0

\rm :\longmapsto\:2x - 4  = 8\dfrac{dy}{dx}

\rm :\longmapsto\:x - 2 = 4\dfrac{dy}{dx}

\rm :\implies\:\dfrac{dy}{dx} = \dfrac{x - 2}{4}

Now, slope of tangent to curve (1) at P is given by

\rm :\longmapsto\:Slope \: of \: tangent, \: m = \bigg(\dfrac{dy}{dx}\bigg) _P

 \rm \:  =  \:  \: \dfrac{4 - 2}{4}

 \rm \:  =  \:  \: \dfrac{2}{4}

 \rm \:  =  \:  \: \dfrac{1}{2}

Hence,

\rm :\longmapsto\:Slope \: of \: tangent, \: m \: = \: \dfrac{1}{2}

We know, that

Equation of tangent line passes through the point ( a, b ) having slope m is given by

\red{ \boxed{ \bf{ \: y - b \:  =  \: m(x - a)}}}

So,

Equation of tangent passes through the point (4, 3/2) and having slope 1/2 is

\rm :\longmapsto\:y - \dfrac{3}{2}  = \dfrac{1}{2} (x - 4)

\rm :\longmapsto\:\dfrac{2y - 3}{2}  = \dfrac{1}{2} (x - 4)

\rm :\longmapsto\:2y - 3 = x - 4

\bf :\longmapsto\:x - 2y - 1 = 0

Now,

We know that

Equation of normal passes through the point ( a, b ) and having slope m is given by

\red{ \boxed{ \bf{ \: y - b \:  =  -  \:   \frac{1}{m} \: (x - a)}}}

So,

Equation of normal passes through the point (4, 3/2) and having m = 1/2 is

\rm :\longmapsto\:y - \dfrac{3}{2}  = -  \:  \dfrac{1}{\dfrac{1}{2} } (x - 4)

\rm :\longmapsto\:y - \dfrac{3}{2}  = -  \:  2 (x - 4)

\rm :\longmapsto\: \dfrac{2y - 3}{2}  = -  \:  2 (x - 4)

\rm :\longmapsto\:2y - 3 =  - 4(x - 4)

\rm :\longmapsto\:2y - 3 =  - 4x + 16

\bf :\longmapsto\:4x + 2y - 19 = 0

Hence,

\begin{gathered}\begin{gathered}\bf\: Equation of-\begin{cases} &\sf{Tangent :  \: x - 2y - 1 = 0} \\ \\  &\sf{Normal :  \: 4x + 2y - 19 = 0} \end{cases}\end{gathered}\end{gathered}

Additional Information :-

1. Let y = f(x) be any curve, then line which touches the curve y = f(x) exactly at one point say P is called tangent and that very point P, if we draw a perpendicular on tangent, that line is called normal to the curve at P.

2. If tangent is parallel to x - axis, its slope is 0.

3. If tangent is parallel to y - axis, its slope is not defined

4. Two lines having slope M and m are parallel, iff M = m

5. If two lines having slope M and m are perpendicular, iff Mm = - 1.

Similar questions