Math, asked by prasannachodavarpu, 23 hours ago

find the equation of the tangent at (1,1) to the circle 2x^2+2y^2-2x-5y+3=0

Answers

Answered by ankitkumar000706
0

Answer:

search-icon-header

Search for questions & chapters

search-icon-image

Question

Bookmark

The equation of the normal of the circle 2x

2

+2y

2

−2x−5y−7=0 passing through the point (1,1) is

Medium

Solution

verified

Verified by Toppr

Correct option is

A

x+2y−3=0

Centre of the given circle is (

2

1

,

4

5

).

Normal passes through centre.

Hence we need a line which is paasing through (

2

1

,

4

5

) and (1,1)

The slope of the line is

2

1

−1

4

5

−1

=−

2

1

⇒ Equation of normal is: (y−1)=−

2

1

(x−1)

⇒2y−2=−x+1

⇒x+2y−3=0

Similar questions