Math, asked by Mafiya2615, 19 days ago

Find the equation of the tangent at 't' on the curve x=a sin^3t,y=cos^3t

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given parametric functions are

\rm \: x = a {sin}^{3}t \\

and

\rm \: y =  {cos}^{3}t \\

So, Point of contact of tangent say P, is

\rm \: Coordinates \: of \: P \:  =  \: ( {asin}^{3}t, \:  {cos}^{3}t) \\

Now, Consider

\rm \: x = a {sin}^{3}t \\

On differentiating both sides w. r. t. t, we get

\rm \:\dfrac{d}{dt}  x = a\dfrac{d}{dt} {sin}^{3}t \\

\rm \:\dfrac{dx}{dt} = 3a {sin}^{2}t \dfrac{d}{dt} sint \\

\rm \:\dfrac{dx}{dt} = 3a {sin}^{2}t cost \\

Now, Consider

\rm \: y =  {cos}^{3}t \\

On differentiating both sides w. r. t. t, we get

\rm \: \dfrac{d}{dt}y = \dfrac{d}{dt} {cos}^{3}t \\

\rm \: \dfrac{dy}{dt} = 3 {cos}^{2}t \dfrac{d}{dt} cost \\

\rm \: \dfrac{dy}{dt} =  - 3 {cos}^{2}tsint  \\

So,

\rm \: \dfrac{dy}{dx}  = \dfrac{dy}{dt} \div \dfrac{dx}{dt} \\

\rm \:  =  \: \dfrac{ - 3 {cos}^{2} t \: sint}{3a {sin}^{2} t \: cost}

\rm \:  =  \:  - \dfrac{cost}{a \: sint}

So,

\rm \: Slope\:of\:tangent, \: m = \bigg(\dfrac{dy}{dx}\bigg)_{P} \:  =  \:  - \dfrac{cost}{a \: sint} \\

We know,

Equation of line which passes through the point (a, b) and having slope m is y - b = m(x - a)

So, equation of tangent at P is given by

\rm \: y -  {cos}^{3}t =  - \dfrac{cost}{a \: sint}(x -  {asin}^{3}t) \\

\rm \: (asint) y - asint {cos}^{3}t =  - (cost)x + acost {sin}^{3}t \\

\rm \: (asint) y +  (cost)x =  acost {sin}^{3}t  + asint {cos}^{3}t \\

\rm \: (asint) y +  (cost)x = asint \: cost( {sin}^{2}t +  {cos}^{2}t)  \\

\rm \: (asint) y +  (cost)x = asint \: cost( 1)  \\

\rm \: (asint) y +  (cost)x = asint \: cost \\

Hence, the required equation of tangent is

\rm\implies \:xcost \:  +  \: a \: sint \: y \:  =  \: a \: sint \: cost \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formula Used

\rm \: \dfrac{d}{dx} {x}^{n} \:  =  \:  {nx}^{n - 1}  \\

\rm \: \dfrac{d}{dx} sinx \:  =  \:  cosx  \\

\rm \: \dfrac{d}{dx} cosx \:  =  \:  -  \: sinx  \\

ADDITIONAL INFORMATION

1. Let y = f(x) be any curve, then line which touches the curve y = f(x) exactly at one point say P is called tangent and that very point P, if we draw a perpendicular on tangent, that line is called normal to the curve at P.

2. If tangent is parallel to x - axis, its slope is 0.

3. If tangent is parallel to y - axis, its slope is not defined.

4. Two lines having slope M and m are parallel, iff M = m.

5. If two lines having slope M and m are perpendicular, iff Mm = - 1.

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions