Math, asked by nitinverma8972, 11 months ago

Find the equation of the tangent to the curve y= root 3x-2 which is parralell

Answers

Answered by Anonymous
3

Question :-

Find the equation of the tangent to the curve y= root 3x-2 which is parralell to the line 4x - 2y +5= 0.

Answer:-

equation of tangent is→ 48x -24 y = 24

Step - by step explanation :-

Solution :-

 \bf{let \: (h ,\: k) \: be \: the \: point \: on \: curve \: } \\  \bf{from \: tangent}

Given equation of tangent is↓

 \implies \:  \bf{y \:  =  \sqrt{3x - 2} } \\  \\  \bf{differentiating \: with \: respect \: to \: x} \\  \\  \implies \:   \bf{\frac{dy}{dx}  =  \frac{d {(3x - 2)}^{ \frac{1}{2} } }{dx} } \\  \\  \bf{ \implies \:  \frac{dy}{dx}  =  \frac{3}{2 \sqrt{3x  - 2} } }

Now ,

 \bf{slope \: of \: tangent \: at \: (h, \: k) \: is} \\  \\  \bf{ \implies \:     \frac{dy}{dx} |  _{(h, \: k)} \:  =  \frac{3}{2 \sqrt{3h - 2} } } \\

Now ,

Given tangent parallel to the line

4x -2 y + 5 = 0

condition :-

  • Slope of tangent = slope of line

Given line ,

  \star \:  \:  \bf{4x - 2y + 5 = 0}  \\  \\ \implies \: \bf{ y =  2x + \frac{5}{2} }

Comparing this from y = mx + c

After comparing ,we get

Slope m = 2

Now , according to the condition

 \implies \:  \bf{ \frac{3}{2 \sqrt{3h - 2} }  = 2} \\  \\ \bf{  \implies \: 3 = 4 \sqrt{3h - 2} } \\  \\ \bf{ squairing \: on \: both \: sides \: } \\  \\  \implies \: \bf{ 9  = 16(3h - 2)} \\  \\  \implies \:  \bf{3h - 2 =  \frac{9}{16} } \\  \\  \implies \: \bf{ h \:  =  \frac{41}{16  \times 3} } \\  \\  \implies \:  \boxed{\bf{h =  \frac{41}{48} }}

Now points (h ,k ) satisfied to the equation of curve ,

put x = h , y = k

 \implies \: \bf{ k =   \sqrt{3h - 2} } \\  \\  \implies \:  \bf{k =  \sqrt{ \frac{41 - 32}{16} }  =  \sqrt{ \frac{ 9}{16} } } \\  \\  \implies \:   \boxed{\bf{k =  \frac{3}{4} }}

Now equation of tangent having slope is 2 ,

 \bf{passing \: points \: ar e \:  \bigg( \frac{41}{48}  \:,  \frac{3}{4}  \bigg)}

Now ,

 \implies \:  \bf{y -  \frac{3}{4}  = 2 \big(x -  \frac{41}{48 } \big)}

On solving this we get,

 \implies \:  \boxed{ \bf{48x - 24y = 23}}

Hence ,

equation of tangent is→ 48x -24 y = 24

Similar questions