Math, asked by yumm, 8 months ago

Find the equation of the tangent to the curve y=sec x at the point (0 , 1). ​

Answers

Answered by MaheswariS
2

\underline{\textsf{Given:}}

\textsf{curve is y=secx}

\underline{\textsf{To find:}}

\textsf{The equation of the tangent to the curve at (0,1)}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{y=sec\,x}

\textsf{Differentiate with respect to x}

\mathsf{\dfrac{dy}{dx}=secx\,tanx}

\textsf{Slope of tangent:}

\mathsf{m=(\dfrac{dy}{dx})_(0,1)}

\mathsf{m=sec0\,tan0}

\mathsf{m=1{\times}0=0}

\textsf{The equation of tangent at (0,1) is}

\mathsf{y-y_1=m(x-x_1)}

\mathsf{y-1=0(x-0)}

\implies\boxed{\mathsf{y-1=0}}

\underline{\textsf{Answer:}}

\textsf{The equation of tangent is y-1=0}

Similar questions