find the equation that represent the quadratic function in the given table of values. table is above ☝️
Answers
Answer:
The required equations are and
Step-by-step explanation:
Given (1) x -2 -1 0 1 2
y 6 3 2 3 6
let the quadratic equation
passes through set of points ( -2, 6) (-1, 3) (0,2) (1, 3) (2,6)
take 3 set of points in a order (-2, 6) (-1, 3) and (0,2)
substitute the above points in
(-2, 6) ⇒
equation (1)
(-1,3 ) ⇒
equation (2)
(0, 2) ⇒
equation (3)
equation (1) - 4 equation (2)
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒ ( equation (3) )
⇒ ⇒ b =
⇒ equation (3) ⇒ 2( ) + c=2
⇒ -3 + c= 2 ⇒ c=5
substitute b = -3/2 and c=5 in equation 2
⇒
⇒
⇒
⇒
⇒
required equation ⇒
⇒
⇒
the required equation is
(2) x 1 2 3 4 5
y 0 1 4 9 16
let the quadratic equation
passes through (1, 0) (2, 1) ( 3, 4) (4, 9) (5, 16)
take 3 set of points (1, 0) (2, 1) and (3, 4)
substitute the above in
( 1, 0) ⇒
⇒ equation 1
(2,1) ⇒
⇒ equation 2
(3, 4) ⇒
⇒ equation 3
equation 1 - equation 2
⇒
⇒ -3a = -1
⇒ a=
equation 2 - equation 3
⇒
⇒
⇒ ( a= 1/3)
⇒
⇒
⇒ 2b = ⇒ b = = ⇒ b= 7/3
a =1/3 , b=7/3 substitute in equation 1
⇒
⇒
⇒ C
The required equation
⇒
⇒
y = x² + 2 represent ( -2 , 6) , (-1,3) , (0 , 2) , (1 , 3) , (2 , 6)
y = (x - 1)² represent (1 , 0) , (2,1) , (3 , 4) , (4 , 9) , (5 , 16)
Quadratic Function f(x) = ax² + bx + c
Quadratic Equation ax² + bx + c = 0 where a, b and c are real and a≠0
y = ax² + bx + c
Substitute x = 0 and y = 2
2= 0 + 0 + c
=> c = 2
Hence y = ax² + bx + 2
Substitute x = -1 and x = 1 and y = 3
a - b + 2 = 3 => a - b = 1
a + b + 2 = 3 => a + b = 1
on solving a = 1 and b = 0
Hence y = x² + 2
Using similar procedure for other table
a + b + c = 0 Eq1
4a + 2b + c = 1 Eq2
9a + 3b + c = 4 Eq3
3a + b = 1 Eq2 - Eq1
5a + b = 3 Eq3 - Eq2
a = 1 , b = - 2 , c = 1
y = x² - 2x + 1
y = (x - 1)²