Find the equation to the cone whose vertex is the point (a,b,c) and whose generating lines intersects the conic px2 + qy2 = 1, z = 0.
Answers
Solution:
The guiding curve is
px² + qy² = 1, z = 0
Let, the straight line through (a, b, c) be
(x - a) / l = (y - b) / m = (z - c) / n ..... (1)
This line meets the plane z = 0
Then, (x - a) / l = (y - b) / m = - c / n ... (1)
This gives x = a - cl/n , y = b - cm/n
The point (a - cl/n, b - cm/n, 0) lies on the curve px² + qy² = 1, then
p (a - cl/n)² + q (b - cm/n)² = 1
or, p (an - cl)² + q (bn - cm)² = n²
or, p {a (z - c) - c (x - a)}² + q {b (z - c) - c (y - b)}² = (z - c)²
or, p (az - cx)² + q (bz - cy)² = (z - c)² ,
which is the equation of the required cone.
Given: px2 + qy2 = 1, z=0
To find: Equation of cone
Solution:
- We have given the conic equation as px2 + qy2 = 1 and z = 0, lets consider a straight line to be in terms of i, j and k.
- So the straight line through ( i,j,k ) will be:
(x - i) / l = (y - j) / m = (z - k) / n ........(i)
- Now we have given that z = 0, so put it in the above equation, we get:
(x - i) / l = (y - j) / m = - k / n ... (1)
- On further solving we get:
x = a - il/n and y = b - mk/n
- Now the point (a - kl/n, b - km/n, 0) lies on the curve px² + qy² = 1, then
p (i - kl/n)² + q (j - km/n)² = 1
p (in - kl)² + q (jn - km)² = n²
p {i (z - k) - k (x - i)}² + q {j (z - k) - k (y - j)}² = (z - k)²
p (iz - kx)² + q (jz - ky)² = (z - k)²
Answer:
- So the required equation is p (iz - kx)² + q (jz - ky)² = (z - k)² .