Math, asked by chandanguptarjl, 4 months ago

Find the equation to the parabola
whose focus and directive are (2, 3),
x - 2y - 6=0​

Answers

Answered by amansharma264
9

EXPLANATION.

Equation to the parabola whose focus = (2,3) and directrix = x - 2y - 6 = 0.

According, to the definition of parabola,

⇒ (SP) = (PM).

⇒ (x - 2) + (y - 3) = | x - 2y - 6/√(1)² + (-2)²|.

⇒ (x - 2) + (y - 3) = | x - 2y - 6/√5|.

Squaring on both sides, we get.

⇒ [(x - 2)² + (y - 3)²]² = | x - 2y - 6/√5 |².

⇒ 5[(x - 2)² + (y - 3)²] = x² + 4y² + 36 - 4xy - 12x + 24y.

⇒ 5[x² + 4 - 4x + y² + 9 - 6y] = x² + 4y² + 36 - 4xy - 12x + 24y.

⇒ 5x² + 5y² - 20x - 30y + 65 = x² + 4y² + 36 - 4xy - 12x + 24y.

⇒ 5x² - x² + 5y² - 4y² - 20x + 12x - 30y - 24y + 4xy + 65 - 36 = 0.

⇒ 4x² + y² + 4xy - 8x - 54y + 29 = 0.

                                                                                             

MORE INFORMATION.

Conditions of Normal.

The line y = mx + c is a normal to the parabola,

(1) = y² = 4ax if c = - 2am - am³.

(2) = x² = 4ay if c = 2a + a/m².

Normal Chord.

If the normal at 't₁' meets the parabola y² = 4ax again at the point 't₂' then this is called as normal chord. again for normal chord, t₂ = -t₁ - 2/t₁.


Anonymous: Niceee ✨ (:
Answered by mathdude500
3

 \large\underline\blue{\bold{Given \:  Question :-  }}

  • ☆Find the equation to the parabola whose focus is (2,3) and directrix is x - 2y - 6 = 0.

─━─━─━─━─━─━─━─━─━─━─━─━─━

\huge \green{AηsωeR} ✍

 \large\underline\pink{\bold{Given  :-  }}

  • Focus of parabola is (2,3)
  • Equation of directrix = x - 2y - 6 = 0

 \large\underline\purple{\bold{To \:  Find :-  }}

  • ☆ Equation of Parabola

 \large\underline\red{\bold{Solution:-  }}

☆Let P(x, y) be any point on the parabola having focus (2, 3) and equation of directrix is x - 2y - 6 = 0.

☆Draw PM perpendicular from P on the directrix, then

  \large\purple{\bold{By  \: definition  \: of  \: Parabola }}

 \blue{\bold{\bf\implies \:SP = PM}}

\sf \:   \sqrt{ {(x - 2)}^{2} +  {(y - 3)}^{2}}  =  |\dfrac{x - 2y - 6}{ \sqrt{ {(1)}^{2} +  {( - 2)}^{2}  } } |

 \blue{\bold{squaring \: both \: sides \: we \: get}}

\sf \:  ⟼ {(x - 2)}^{2}  +  {(y - 3)}^{2}  =  {( |\dfrac{x - 2y - 6}{ \sqrt{5} } | )}^{2}

\sf \:  ⟼ 5({x}^{2}  + 4 - 4x +  {y}^{2}  + 9 - 6y )=  \\  {x}^{2}  +  {4y}^{2}  + 36 - 4xy + 24y - 12x

\sf \:  ⟼5 {x}^{2}  + 65 - 20x +  {5y}^{2}  - 30y =  \\  {x}^{2}  +  {4y}^{2}  + 36 - 4xy + 24y - 12x

\sf \:  ⟼4 {x}^{2}  +  {y}^{2}  + 4xy - 8x - 54y  +  29 = 0

─━─━─━─━─━─━─━─━─━─━─━─━─━

Attachments:
Similar questions