Find the equation to the parabola
whose focus and directive are (2, 3),
x - 2y - 6=0
Answers
EXPLANATION.
Equation to the parabola whose focus = (2,3) and directrix = x - 2y - 6 = 0.
According, to the definition of parabola,
⇒ (SP) = (PM).
⇒ (x - 2) + (y - 3) = | x - 2y - 6/√(1)² + (-2)²|.
⇒ (x - 2) + (y - 3) = | x - 2y - 6/√5|.
Squaring on both sides, we get.
⇒ [(x - 2)² + (y - 3)²]² = | x - 2y - 6/√5 |².
⇒ 5[(x - 2)² + (y - 3)²] = x² + 4y² + 36 - 4xy - 12x + 24y.
⇒ 5[x² + 4 - 4x + y² + 9 - 6y] = x² + 4y² + 36 - 4xy - 12x + 24y.
⇒ 5x² + 5y² - 20x - 30y + 65 = x² + 4y² + 36 - 4xy - 12x + 24y.
⇒ 5x² - x² + 5y² - 4y² - 20x + 12x - 30y - 24y + 4xy + 65 - 36 = 0.
⇒ 4x² + y² + 4xy - 8x - 54y + 29 = 0.
MORE INFORMATION.
Conditions of Normal.
The line y = mx + c is a normal to the parabola,
(1) = y² = 4ax if c = - 2am - am³.
(2) = x² = 4ay if c = 2a + a/m².
Normal Chord.
If the normal at 't₁' meets the parabola y² = 4ax again at the point 't₂' then this is called as normal chord. again for normal chord, t₂ = -t₁ - 2/t₁.
- ☆Find the equation to the parabola whose focus is (2,3) and directrix is x - 2y - 6 = 0.
─━─━─━─━─━─━─━─━─━─━─━─━─━
- Focus of parabola is (2,3)
- Equation of directrix = x - 2y - 6 = 0
- ☆ Equation of Parabola
☆Let P(x, y) be any point on the parabola having focus (2, 3) and equation of directrix is x - 2y - 6 = 0.
☆Draw PM perpendicular from P on the directrix, then
─━─━─━─━─━─━─━─━─━─━─━─━─━