Math, asked by vasudaloganathan, 6 months ago


Find the equation whose roots are
1) 1, 2

Answers

Answered by sckbty72
0

Answer:

x^2 - 3x + 2

Step-by-step explanation:

Sum of roots = α + β = 1+2 = 3

Product of roots = αβ = 1*2 = 2

So, equation = x^2 - (α+β)x + αβ

                     = x^2 - 3x + 2

Answered by aryan073
4

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \:  \blue{ \bold{ \underline{ \underline{ \: correct \: answer}}}}

 \:  \:  \orange { \bold{ \underline{ \underline{step \: by \: step \: explaination : }}}}

 \:  \:   \green { \bold{ \underline{ \underline{given \star}}}}

 \:   \bullet\bf{find \: the \: equation \: whose \: roots \: are}

 \:  \bf{(1) \: 1 \: and \: 2}

 \:  \red{ \bold{ \underline{ \underline{to \: find \to}}}}

 \:  \to \bf{the  \: equation \: of \: \: roots \: }

 \:  \:  \green { \bold{ \underline{ \underline{ \: \: solution : }}}}

 \:  \:   \\   \tt :  \implies the \: roots \: of \: the \: equations \: are \: 1 \: and \: 2

 \:  \:  \\  \tt :  \implies \:  \alpha = 1 \: and \:  \beta  = 2.......given

 \:  \:   \\  \ \tt :  \implies   \underline{ \: by \: formation \: of \: quadratic \: equation}

 \:  \:  \\  \tt  :  \implies  {x}^{2}  - (  \alpha  +  \beta )x +  \alpha  \beta  = 0

 \:  \:  \\  \tt : \implies \underline{substitute \: the \: values \: in \: equation}

 \:  \:   \\  \tt : \implies \:  {x}^{2}  - (1 + 2)x + 1 \times 2 = 0

 \:  \:  \\  \tt :  \implies \:  {x}^{2}  - 3x + 2 = 0

 \:  \: \\   \tt  :  \implies \boxed { {x}^{2}  - 3x + 2 = 0 \: \: }

______________________________________

 \:  \:  \:   \boxed{ \bf{additional \: information}}

 \:  \bullet \bf{by \: formation \: of \: quadratic \: equation}

 \:  \ggg \bf{ {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta  = 0}

 \:   : \implies \tt{sum \: of \: the \: roots \:  =  \frac{ - b}{a} }

 \:   \\  : \implies \tt{product \: of \: the \: roots \:  =  \frac{c}{a} }

Similar questions