find the equation whose roots are 2
,-1/2
Answers
Step-by-step explanation:
α+β=a,αβ=b
α+β=a,αβ=blet equation whose roots are 2α+1,2β+1
α+β=a,αβ=blet equation whose roots are 2α+1,2β+1be x
α+β=a,αβ=blet equation whose roots are 2α+1,2β+1be x 2
α+β=a,αβ=blet equation whose roots are 2α+1,2β+1be x 2 +Ax+B=0
α+β=a,αβ=blet equation whose roots are 2α+1,2β+1be x 2 +Ax+B=0 then −A=(2α+1)+(2β+1)=0
α+β=a,αβ=blet equation whose roots are 2α+1,2β+1be x 2 +Ax+B=0 then −A=(2α+1)+(2β+1)=0 −A=2(a)+2=2(a+1)
α+β=a,αβ=blet equation whose roots are 2α+1,2β+1be x 2 +Ax+B=0 then −A=(2α+1)+(2β+1)=0 −A=2(a)+2=2(a+1) B=(2α+1)(2β+1)
α+β=a,αβ=blet equation whose roots are 2α+1,2β+1be x 2 +Ax+B=0 then −A=(2α+1)+(2β+1)=0 −A=2(a)+2=2(a+1) B=(2α+1)(2β+1) =4αβ+2α+2β+1
α+β=a,αβ=blet equation whose roots are 2α+1,2β+1be x 2 +Ax+B=0 then −A=(2α+1)+(2β+1)=0 −A=2(a)+2=2(a+1) B=(2α+1)(2β+1) =4αβ+2α+2β+1 =4b+2a+1
α+β=a,αβ=blet equation whose roots are 2α+1,2β+1be x 2 +Ax+B=0 then −A=(2α+1)+(2β+1)=0 −A=2(a)+2=2(a+1) B=(2α+1)(2β+1) =4αβ+2α+2β+1 =4b+2a+1 ∴ required equation is
α+β=a,αβ=blet equation whose roots are 2α+1,2β+1be x 2 +Ax+B=0 then −A=(2α+1)+(2β+1)=0 −A=2(a)+2=2(a+1) B=(2α+1)(2β+1) =4αβ+2α+2β+1 =4b+2a+1 ∴ required equation is x
α+β=a,αβ=blet equation whose roots are 2α+1,2β+1be x 2 +Ax+B=0 then −A=(2α+1)+(2β+1)=0 −A=2(a)+2=2(a+1) B=(2α+1)(2β+1) =4αβ+2α+2β+1 =4b+2a+1 ∴ required equation is x 2
α+β=a,αβ=blet equation whose roots are 2α+1,2β+1be x 2 +Ax+B=0 then −A=(2α+1)+(2β+1)=0 −A=2(a)+2=2(a+1) B=(2α+1)(2β+1) =4αβ+2α+2β+1 =4b+2a+1 ∴ required equation is x 2 −2(a+1)x+4b+2a+1=0
Answer: