Math, asked by sanjaytj25, 3 days ago

Find the equations of tangent and normal to the curves
 x = a \:   { \sin}^{3} theta \: and \: y = a \:  { \cos }^{3} theta \: at \: theta =  \frac{\pi}{4}

Answers

Answered by MysticalAnswerer
4

GiveN :

  •  x\ =\ a \sin^3 \theta
  •  y\ =\  a \cos^3 \theta

To FinD :

  • Equation of Tangent and Equation of normal

SolutioN :

Differentiate and y wrt. theta

\sf{\implies\ \dfrac{dy}{d \theta}\ =\ (a \cos^2 \theta) (- \sin \theta)} \\\\

\sf{\implies\ \dfrac{dy}{d \theta}\ =\ -a \cos^2 \theta \sin \theta} \\\\

\sf{\implies\ \dfrac{dy}{d \theta}_{\bigg( At\ \theta\ =\  \dfrac{\pi}{4} \bigg) }\ =\ -a \cos^2 \bigg(\dfrac{\pi}{4} \bigg) sin \bigg(\dfrac{\pi}{4} \bigg) } \\\\

\sf{\implies{ \dfrac{dy}{d \theta}_{(At\ \theta\ =\  \dfrac{\pi}{4})}\ =\ -a \bigg( \dfrac{1}{\sqrt{2}} \bigg)^2 \bigg( \dfrac{1}{\sqrt{2}} \bigg)}} \\\\

\sf{\implies \dfrac{dy}{d \theta}_{(At\ \theta\ =\  \dfrac{\pi}{4})}\ =\ \dfrac{-a}{2 \sqrt{2}} }

___________________

Differentiate x wrt. Theta

See Attached Picture

__________________

We know that,

\implies \sf{\dfrac{dy}{dx}\ = \dfrac{\dfrac{dy}{d \theta}}{\dfrac{dx}{d \theta}} } \\\\

Substituting Values ..

 \implies \sf{ \dfrac{dy}{dx}\ =\ \frac{\dfrac{-a}{2 \sqrt{2}}}{\frac{a}{2 \sqrt{2}}}} \\\\

\implies \sf{ \dfrac{dy}{dx}\ =\ -1}

_____________________

So, We get :

  • Equation of Tangent \sf{x\ +\ y\ =\ \dfrac{a}{\sqrt{2}}}

  • Equation of Normal \sf{y\ -\ x\ =\ 0}
Attachments:
Similar questions