Math, asked by Anonymous, 1 year ago


Find the equations of the line passing through (4, 5) and making an angle of 45° with the line 2x – y + 7 = 0.​

Answers

Answered by ItSdHrUvSiNgH
6

Step-by-step explanation:

\Huge\underline{\underline{\sf ANSWER}} \\ we \: know \: that =  >  \\  \\  \tan(a)  =  | \frac{m2 - m1}{1 + m1 \times m2} |  \\  \tan( \frac{\pi}{4} )  =  | \frac{m1 -  2}{1 + 2m1} |  \\ 1 =  \frac{m1 - 2}{1 + 2m1}  \:  \:  \:  \: or \:  \:  \:  \: 1 =  - ( \frac{m1 - 2}{1 + 2m1} ) \\ 2m1  + 1 = m1 - 2 \:  \:   \:  or \:  \:  \:  \\ 2m1 + 1 = 2 - m1 \\ m1 =  - 1 \:  \:  \:  \: or \:  \:  \:  \: m1 =  \frac{1}{3}  \\  \\ if \: m1 =  - 1 =  >  \\ (y - 5) =  - 1(x - 4) \\ y - 5 =  - x + 4 \\ x + y - 9 = 0 \\  \\  \\ if \: m1 =  \frac{1}{3}  \\ (y - 5) =  \frac{1}{3} (x - 4) \\ 3y - 15 = x - 4 \\ x - 3y + 11 = 0 \\   \\ there \: are \: two \: equations... \\ x + y - 9 = 0 \:  \: or \:  \: x - 3y + 11 = 0\\  \\ hope \: it \: helps...

Answered by Anonymous
7

Step-by-step explanation:

see in the attachment ....

HOPE IT HELP UHHH. .......

Attachments:
Similar questions